
Security Engineering
Modern Operating Systems 2: Cloud security,

sandboxing, virtualization and containers.

Today

• Last time: Mostly about access control
• Today: Mostly about isolation

Challenges

• How do you stop others, using the same system(s),
from being able to read your data / hack your
software?
• I mean, really stop them (side channels, bugs in

TCB)?
• How do you know a cloud provider is even running

the software you’ve asked it to, without any
tampering (remote attestation)?

Cloud Security

• Access control often specific to provider e.g. AWS
Identity and Access Management – lock in
• Google App Engine: Provide only indirect access to

networking/file system, by "safe" versions that
integrate MAC and call other cloud infrastructure.
• Defence in depth: Integrate sanitization,

mitigation/hardening, functionality reduction,
indirection (Python -> NaCL) and ptrace filtering and
logging.
• Why would you pay Amazon to run your own local

servers?
https://aws.amazon.com/blogs/containers/introducing-
amazon-ecs-anywhere/

https://aws.amazon.com/blogs/containers/introducing-amazon-ecs-anywhere/
https://aws.amazon.com/blogs/containers/introducing-amazon-ecs-anywhere/

Isolation: Processes and Memory
Management

User-mode accessibleNo execute

WriteableProtection keys (4 bits)

Page-Table Walks

Operating-System Page-Table
Protection Features
• Data Execution Prevention (NX XOR W) – forces

attackers to use Return-Oriented Programming.
• Address Space Layout Randomisation

Isolation: Sandboxing,
Virtualization and Containers
• Containers e.g. Docker: between-process with

filtering
• Virtualization e.g. VirtualBox: whole separate

“guest” OS on top of a shared “host” OS
• Sandboxing e.g. Chrome, eBPF: often within-

process

Isolation: Sandboxing

• Pioneered by Sun with the JVM
• Restrict the environment in various ways:

temporary access to a single directory,
communication via same-origin policy
• Prevent access of address space outside of a

predefined region, e.g. the Javascript interpreter’s
memory in a browser (Spectre klaxon).

Sandboxing and Isolation in
Chrome
• Cross-website theft increasingly important, so Site

Isolation not just Renderer Isolation.
• Increasingly done by process-level isolation: also

useful for Spectre.
• The “same-origin policy” gets complicated when

you have untrusted ads in the same tabs…
• Vulnerabilities often exploited by Drive-by-

Download attacks.

Sandboxing in eBPF

• Extended Berkeley Packet Filter: Run sandboxed
user code inside the kernel!
• Typically used for network packet filtering and

security analysis
• Turing incomplete, so guaranteed to terminate, and

no unreachable code allowed.
• Optional pointer arithmetic prevention; guaranteed

bounds checking (modulo Spectre).
• Kernel-API filtering based on type (e.g. network

only)

Isolation: Virtualization

• Replaces the entire operating system, and runs a
“guest” operating system on top of a “host” via
hypervisor.
• Powers cloud computing.
• HW support such as Intel VT-x makes things cleaner

and faster.
• Why more secure? The hypervisor can be much

smaller than a full OS and so easier to code-review
and secure, right???

Page-Table Walks in Virtualized
Systems

Virtualization

• Can have different guests and hosts (e.g. Windows
on OSX)
• Get flexibility and containment
• Samsung Knox: get a VM for an employer to lock

down and manage remotely, next to normal
Android on the same device.

Virtualization: Challenges

• Subtle issues around monitoring: If you're going to
check all ACLs on your server, what about the
containers or virtualized systems?
• Trouble at the interface: people still need to share

data between VMs and ad-hoc mechanisms such as
USB devices
• Bromium: VM per app, messy at the interface with

untrusted files sent via host. Need specific
exceptions and plugins, like Outlook being
prevented from rendering files itself.

Isolation: Containers

• Cheaper than a VM, but less secure. E.g. Docker
• Shared kernel, but isolates application code and

libraries from the rest of the system -- not shared
anymore.
• NSjail: trap processes in a "jail": restrict syscalls by

seccomp, change root to a local directory.
• Virtualise some parts but not others e.g. PIDs, IPC

and namespaces.
• Syscall filtering too, and sandboxing.

Containers: Issues

• Not the same as VM, and not really meant for data
isolation -- don't expect the same isolation as with
a VM -- the trusted code base is still massive.
• Really for deployability, not security. Many subtle

bugs, such as blank root passwords as defaults!
• On the flipside, deployability might *be* a security

feature – why?

Google

• SRS: "Google compartmentalizes by role, location,
and time. When an attacker tries to compromise a
compartmentalized system, the potential scope of
any single attack is greatly reduced. If the system is
compromised, the incident management teams have
options to disable only parts of it to purge the effects of
the compromise while leaving other parts
operational.”
• For microservices, this means run jobs that don't need

access to the same things as different accounts, means
splitting across multiple data centres, and rotating
keys over time to limit scope and force attacker to
maintain presence.

Trust: TPMs and
Enclaves

Remote Attestation

Untrusted System

TPM

You
Hash()

Your Code(?)

Remote Attestation

If(registered(video))
 Play(video);

Your program

Remote Attestation

If(registered(video))
 Play(video);

Your program

If(registered(video))
 Play(video);

Absolutely definitely
your program,
honest.

TPM

Trusted Platform Module

IO Crypto Hardware

Persistent Keystore

Memory

Chain of Verification

From google.github.io/tpm-js/

TPM

Secure Boot

IO Crypto Hardware

Persistent Keystore

Memory

Firmware

Bootloader

Kernel

Software

Log

TPM

Secure Boot

IO Crypto Hardware

Persistent Keystore

Memory

Firmware

Bootloader

Kernel

Software

Log
H(F)

⊕

TPM

Secure Boot

IO Crypto Hardware

Persistent Keystore

Memory

Firmware

Bootloader

Kernel

Software

Log
H(F)

H(F,B)

⊕

TPM

Secure Boot

IO Crypto Hardware

Persistent Keystore

Memory

Firmware

Bootloader

Kernel

Software

Log
H(F)

H(F,B)
H(F,B,K)

⊕

TPM

Secure Boot

IO Crypto Hardware

Persistent Keystore

Memory

Firmware

Bootloader

Kernel

Software

Log
H(F)

H(F,B)
H(F,B,K)

H(F,B,K,S)

⊕

Trusted Code Base

Firmware

Bootloader

Kernel

Software
Rest of System?

Trusted Code Base

Firmware

Bootloader

Kernel

Software
Rest of System?

Secure Boot vs Measured Boot

Trusted Code Base

Firmware

Bootloader

Kernel

Software
Rest of System?

Trusted Code Base

Firmware

Bootloader

Kernel

Software
Rest of System?

Buffer
Overflow

Trusted Code Base

Firmware

Bootloader

Kernel

Software
Rest of System?

Trusted Code Base

Firmware

Bootloader

Kernel

Software
Rest of System?

Enclaves (Trustzone, SGX, SEV)

CPUTPM vs

Untrusted Code

Private Code

Private Data

Enclaves

• Isolate you from the OS, and give precise
attestation of just your software, but…
• Tension around access versus isolation, e.g.

Qualcomm’s devices let a Trusted App map in
regions of the host OS.
• Typically cause other security features to falter:

often weak ASLR, large TCBs, information leakage
especially over debug, no DEP…
• Side channels out-of-scope, and even Attestation

can be broken by attacks on integrity (last lecture)

Further Reading

• Security Engineering Chapters 7, 6, 9, 27, 24
• J Gamblin, “Nearly 20% of the 1000 Most Popular

Docker Containers Have No Root Password”, Kenna
Security Blog May 20 2019
• Google SRS, Chapter 8: Design for Resilience,

Chapter 7: Design for a Changing Landscape
● A Minimalist Approach to Remote Attestation,

Francillon et al., DATE 2014
● Principles of Remote Attestation, Coker et al.,

International Journal of Information Security, 2011

