Assurance and
Sustainability

Ross Anderson

Definitions

* Assurance: whether a system will work, and how
you’re sure of this.

 Compliance: how you can satisfy other people of
this.

* Sustainability: how long will it work for?

* Secure systems need Incentives, Policy,
Mechanisms and Assurance. Usability cuts through
all four!

DevSecOps

* DevOps: blur development and execution

e DevSecOps: Add security in to the entire lifecycle
too!

* DevSecOps involves a “shift left”
* Solve your hardest problems first: Spiral and Agile.

Waterfall

Requirements Refine
A 1
\
S Specification Code
Validate
A
|
S Impler.nenta.tion Build
Validate & unit testing
A
] Integration & Field
Verify system testing 1
A
W ___ 1 Operations &
Verify maintenance

Spiral

Progress
Risk
analysis
Prototype
P #2
#1
Commit K‘ _\ Test
\\’ J Settle final
Development Prodiict design
lan : Code
P design
Test system
Ship

Agile

What’s my

hardest
/ riskiest I l

problem?

2 weeks

DevSecOps (2)

* Technical debt: shortcuts have to be repaid later!
* Run your DevOps environment “debt-free”.

e Automate configuration as well as build!

* Use proxy tools where possible

* Google: set a realistic reliability target of e.g. 99.9%
and use the rest for failure recovery, upgrades and
experiments.

Design for Testability: Unit Tests

 JUnit (Java), GoogleTest (C++), xUnit (for all X)

* Test-driven development (TDD): write the tests
first!

» Refactor code for testability: abstractions to avoid
“flaky tests”.

@Test (timeout=)

Tpublic volid testFib() {
assertEquals (55, fibonacci(10))) ;
assertEquals (!, fibonacci (1)) ;

}

Design for Testability: Integration Tests

Jenkinsfile (Declarative Pipeline)

pipeline {
agent any
stages {
stage('Build’) {
steps {
echo "Building..’
}
}
stage('Test") {
steps {
echo "Testing..'’
h
h
stage('Deploy’) {
steps {
echo 'Deploying....°
¥
}
}

Design for Testability: Integration Tests (2)

* Integration tests should use the real interfaces, not
abstractions!

* Be careful around the privilege of your tests!

* Don’t use real data (too flaky and secret), and don’t
leave secrets in the code.

Dynamic Analysers: AddressSanitizer

OxDEADBEEF

Shadow Bits

Dynamic Analysers (2): Sanitizers
and Mitigators

e Sanitisers: AddrSan, UBSan, LSan, MSan, TSan,
Valgrind, Helgrind.

* Mitigators: Scudo Hardened Allocator, Clang CFl,
MarkUs/MineSweeper

* Mitigators: no false positives.

 Sanitisers: some false positives allowed. Hide with
e.g. _ attribute ((no_sanitize("undefined")))

Dynamic Analysers (3): Fuzzing

* Combine your sanitizers with fuzzing.
* Dumb fuzzing: RNGs.
* Smart fuzzing: domain-specific dictionaries.

 FuzzedDataProvider in LLVM: format conversion for
random input

* LibFuzzer: generate a corpus based on code
coverage!

 Combine with chaos engineering: inject faults into
both tests and production!

Static Analysers: Linters

* Error Prone for Java / Clang-Tidy for C(++).

#define BUFLEN 42

char buf[BUFLEN] ;

memset (buf, 0, sizeof (BUFLEN)) ;
// sizeof (42) ==> sizeof (int)

https://clang.llvm.org/extra/clang-
tidy/checks/bugprone-sizeof-expression.html

Static Ana\ysers Bug Finders

111111111111111111111111

How Coverity built a bug-finding tool, and
a business, around the unlimited supply
of bugs in software systems.

BY AL BESSEY, KEN BLOCK, BEN CHELF, ANDY CHOU,
BRYAN FULTON, SETH HALLEM, CHARLES HENRI-GROS,
ASYA KAMSKY, SCOTT MCPEAK, AND DAWSON ENGLER

A Few Billion
Lines of
Code Later

Using Static Analysis
to Find Bugs in
the Real World

Static Analysers: Concolic Tests

* E.g. Klee
x # 100000 x = 100000
void f(int x, int y) {
int z = 2%y;
if (x ==) |
if (x < z) { X=1Z

assert(0); /* error */

}

x=100000

Static Analysers: Abstract
Interpretation

int* a = malloc (4 *sizeof(int)); //@a=[0,4000]
int sum = 0;
for(int x=0; x< | ;o x++) { // @x=[0,9999]

int v = xX+x; // @y=[0,19998]

int z= (y+4)&3191; // @z=[0,8191]

sum+= al[z]; //out of bounds!

Static Analysers: Abstract
Interpretation

int* a = malloc(*sizeof (1nt)) ;

int sum =

for(int x=0; x< ; x++) { // @x={odd,even}
int v = x+x; // Q@y={even}

sum+= al[y&l? :0]; //safe!

Static Analysers: Abstract

Interpretation
int* a = malloc(*sizeof (int)); //@a=[0,4000]
int sum = 0;
ifor (int x=0; x< ;o x++) { // @x=[0,9999]
int yv = x+x; // Q@y=[0,19998]
sum+= al[y&!? :0]; //out of bounds???

Static Analysers: Formal Methods

{BAP}S{Q} , {-~BAP}T{Q}
{P}if B then S else T endif{Q}

Static Analysers: Type Systems

* PHP -> Hack, JavaScript -> TypeScript.

let x = "alphabet"”;
X = -

Static Analysers: Prepared

Statements
HI, THIS 1S OH, DEAR - DID HE
YOUR SON'G SCHOOL. | BREAK SOMETHING?
WE'RE HAVING SOME
COMPUTER TROUBLE. | "N A WAY

\%m

Image from XKCD

%

DID YOU REALLY
NAME YOUR SON
Robert’); DROP
TABLE Students;-~ 7

~ OH.YES. LITTLE
BOBBY TABLES,
WE CALL HIM.

WELL, WEVE LOST THIS
YEARS STUDENT RECORDS.
T HOPE YOURE HAPPY.

!

AND I HOPE
- YOUVE LEARNED
t TOSANMZE YOUR
DATARASE INPUTS,

https://xkcd.com/327/

Static Analysers: Prepared

Statements
HI, THIS 1S OH, DEAR - DID HE
YOUR SON'G SCHOOL. | BREAK SOMETHING?
WE'RE HAVING SOME
COMPUTER TRowBLE. | "N A WAY

\%m

%

DID YOU REALLY
NAME YOUR SON
Robert'); DROP
TABLE Students; -~ 7

~ OH.YES. LITTLE
BOBBY TABLES,
WE CALL HIM.

WELL, WEVE LOST THIS
YEARS STUDENT RECORDS.
I HOPE YOURE HAPPY.

!

AND I HOPE
- YOUVE LEARNED
TOSEPARATE YOUR

DATABASE INPUTS
FROM YOUR QUERIES

Remixed from XKCD < https://xkcd.com/327/ =

https://paragonie.com

Don’t just Sanitize — use e.g. SafeSQL to make the input command static!

Getting your Disclosure Policy Right

* How do you get people to report bugs to you
oefore they disclose publicly?

* How do you avoid disclosures selling your bugs to
someone else?

* How do you get your CEO to not deny/deflect?

Incentivising Finding Bugs

* External Researchers: Bug bounties and
“vulnerability pricing”

* Red and Blue teams within your company.
* Chaos Engineering: make things break all the time!

Security Incident and Event Management

* Monitor -> Repair -> Distribute -> Reassurance.

Threat
Intelligence

Honeypots

Consumer
Reports

Bounties

CERTs

Orchestrated
Response

Intrusion
Detection

|dentify
Responsible Dev
teams

Notify suppliers
& customers

Emergency
Response

Honesty

Automated SPEsE

Patching (all

the time) 8000

Examples

PR templates

The Patch Cycle

* Google SRS: “Before you tackle a same-day zero-day
vulnerability response, make sure you’re patched for
the ‘top hits’ to cover critical vulnerabilities from
recent years.”

* “If you are privy to information about a vulnerability
under embargo, and rolling out a patch would break
the embargo, you must wait for a public
announcement before you can patch along with
the rest of the industry. If you’re involved in
incident response prior to the announcement of a
vulnerability, work with other parties to agree on an
announcement date that suits the rollout processes of
most organizations—for example, a Monday”

The Patch Cycle (2)

* Patch and Scan: patch everything you can, then
develop tools to find the stragglers.

* Expedited rollout of 0-days: use the same tools, or
you’ll have trouble!

* Get your PR ready, and have a plan.
* Track outlier machines that can’t be locked down.

Risk Management

* Insiders are the biggest risk, from carelessness AND
malice.

* Need to embed control in the culture.

* Need policies that can handle 1% of staff going bad
each year.

* Accountability: be way of shopping for compliance
from audits, rather than security!

Risk Management (2)

* [ISO27001 and Common Criteria largely failures
(more in the Governance and Regulation lecture):
principle of maximum complacency.

* Don’t let tickboxes get in the way of critical
thought!

* Being a CISO is often thankless.
* Blame (and accountability) matters.

 You won’t know where the next disaster will come
from, so be adaptive!

