
Assurance and
Sustainability

Ross Anderson

Definitions

• Assurance: whether a system will work, and how
you’re sure of this.
• Compliance: how you can satisfy other people of

this.
• Sustainability: how long will it work for?
• Secure systems need Incentives, Policy,

Mechanisms and Assurance. Usability cuts through
all four!

DevSecOps

• DevOps: blur development and execution
• DevSecOps: Add security in to the entire lifecycle

too!
• DevSecOps involves a “shift left”
• Solve your hardest problems first: Spiral and Agile.

Waterfall

Spiral

Agile

2 weeks

What’s my
hardest
/ riskiest
problem?

DevSecOps (2)

• Technical debt: shortcuts have to be repaid later!
• Run your DevOps environment “debt-free”.
• Automate configuration as well as build!
• Use proxy tools where possible
• Google: set a realistic reliability target of e.g. 99.9%

and use the rest for failure recovery, upgrades and
experiments.

Design for Testability: Unit Tests

• JUnit (Java), GoogleTest (C++), xUnit (for all X)
• Test-driven development (TDD): write the tests

first!
• Refactor code for testability: abstractions to avoid

“flaky tests”.

Design for Testability: Integration Tests

Design for Testability: Integration Tests (2)

• Integration tests should use the real interfaces, not
abstractions!
• Be careful around the privilege of your tests!
• Don’t use real data (too flaky and secret), and don’t

leave secrets in the code.

Dynamic Analysers: AddressSanitizer

0xDEADBEEF

Shadow Bits

Dynamic Analysers (2): Sanitizers
and Mitigators
• Sanitisers: AddrSan, UBSan, LSan, MSan, TSan,

Valgrind, Helgrind.
• Mitigators: Scudo Hardened Allocator, Clang CFI,

MarkUs/MineSweeper
• Mitigators: no false positives.
• Sanitisers: some false positives allowed. Hide with

e.g. __attribute__((no_sanitize("undefined")))

Dynamic Analysers (3): Fuzzing

• Combine your sanitizers with fuzzing.
• Dumb fuzzing: RNGs.
• Smart fuzzing: domain-specific dictionaries.
• FuzzedDataProvider in LLVM: format conversion for

random input
• LibFuzzer: generate a corpus based on code

coverage!
• Combine with chaos engineering: inject faults into

both tests and production!

Static Analysers: Linters

• Error Prone for Java / Clang-Tidy for C(++).

https://clang.llvm.org/extra/clang-
tidy/checks/bugprone-sizeof-expression.html

Static Analysers: Bug Finders

Static Analysers: Concolic Tests

• E.g. Klee

Static Analysers: Abstract
Interpretation

Static Analysers: Abstract
Interpretation

Static Analysers: Abstract
Interpretation

Static Analysers: Formal Methods

Static Analysers: Type Systems

• PHP -> Hack, JavaScript -> TypeScript.

Static Analysers: Prepared
Statements

Static Analysers: Prepared
Statements

Don’t just Sanitize – use e.g. SafeSQL to make the input command static!

Getting your Disclosure Policy Right

• How do you get people to report bugs to you
before they disclose publicly?
• How do you avoid disclosures selling your bugs to

someone else?
• How do you get your CEO to not deny/deflect?

Incentivising Finding Bugs

• External Researchers: Bug bounties and
“vulnerability pricing”
• Red and Blue teams within your company.
• Chaos Engineering: make things break all the time!

Security Incident and Event Management

• Monitor -> Repair -> Distribute -> Reassurance.

Threat
Intelligence

Honeypots

Consumer
Reports

Bounties

CERTs

Orchestrated
Response

Intrusion
Detection

Identify
Responsible Dev

teams

Notify suppliers
& customers

Emergency
Response

Automated
Patching (all

the time)

Honesty

Speed

Good
Examples

PR templates

The Patch Cycle

• Google SRS: “Before you tackle a same-day zero-day
vulnerability response, make sure you’re patched for
the `top hits’ to cover critical vulnerabilities from
recent years.”
• “If you are privy to information about a vulnerability

under embargo, and rolling out a patch would break
the embargo, you must wait for a public
announcement before you can patch along with
the rest of the industry. If you’re involved in
incident response prior to the announcement of a
vulnerability, work with other parties to agree on an
announcement date that suits the rollout processes of
most organizations—for example, a Monday”

The Patch Cycle (2)

• Patch and Scan: patch everything you can, then
develop tools to find the stragglers.
• Expedited rollout of 0-days: use the same tools, or

you’ll have trouble!
• Get your PR ready, and have a plan.
• Track outlier machines that can’t be locked down.

Risk Management

• Insiders are the biggest risk, from carelessness AND
malice.
• Need to embed control in the culture.
• Need policies that can handle 1% of staff going bad

each year.
• Accountability: be way of shopping for compliance

from audits, rather than security!

Risk Management (2)

• ISO27001 and Common Criteria largely failures
(more in the Governance and Regulation lecture):
principle of maximum complacency.
• Don’t let tickboxes get in the way of critical

thought!
• Being a CISO is often thankless.
• Blame (and accountability) matters.
• You won’t know where the next disaster will come

from, so be adaptive!

