Security Engineering

Psychology and Behavioural Economics

Social Engineering

- Use a plausible story, or just bully the target
- 1980s: 'What's your PIN so I can cancel your card?'
- Threat to students: don't get phished into acting as money mules!
- Many attacks on companies and governments...
- Organisational defence: control external communications, and limit the harm that any one person or machine can do
 - mandatory access control
 - operational security

Scaling it up: phishing

- Took off in 2006, when UK banks lost £35m (£33m by one bank) and US banks maybe \$200m
- Lures evolve
 - 'Thank you for adding a new email address to your PayPal account'
 - 'This is NHS Test and Trace'
- Can be combined with tech exploits, e.g. caller ID spoofing
- Pervasive 80% of UK adults targeted last year (many for other scams but still...)

Spear phishing nowadays

- The Snooping Dragon (2008) China vs Tibetans
- Now it's one of the main techniques used in both ransomware and cyberwar
- A well-crafted, personalised lure can get 30% yield
- Some big consequences, e.g. John Podesta in 2016
- Banks, intel agencies, tech companies protect staff by two-factor authentication, mail filtering etc
- Spooks go for political campaigners, journalists; ransomware gangs for hospitals, ordinary firms

Psychology of safety and security

- Errors arise at different levels of the 'stack'
 - We deal with novel problems in a conscious way
 - Frequently encountered problems are dealt with using rules we evolve, and are partly automatic
 - Over time, the rules give way to skill
- Our ability to automatise routine actions leads to absent-minded slips, or following a wrong rule
- There are also systematic limits to rationality 'heuristics and biases', as well as social psychology
- This gives us a rough taxonomy of errors

Error types

- Knowledge-based (and ignorance-based) mistakes
- Processing biases, based on how human brains work
- Rule-based mistakes: applying wrong procedure
- Slips and lapses
 - Forgetting plans, intentions; habit intrusion
 - Premature exits from action sequences, e.g. ATMs
 - Misidentifying objects, signals (often Bayesian)
 - Retrieval failures; tip-of-tongue, interference

Social psychology

- Conformity: Solomon Asch showed most people would deny obvious facts (like relative line length) to conform with others
- Authority: Stanley Milgram showed that over 60% of all subjects would inflict a potentially fatal shock on a 'student' if ordered to do so by a 'teacher'
- Philip Zimbardo's Stanford Prison Experiment suggested that roles alone might be enough!

The social brain hypothesis

- Old view: we got smart to make better tools
- Archaeology: we got smart first!
- New view: when Africa dried out 1.5m years ago, we started living in bigger groups
- Primate brain size correlates well with group size
- Social aspect: big brains track more relationships
- Machiavellian aspect: if you're better at deception, and at detecting deception in others, you're more likely to have descendants

Gender

- Men are much more likely to commit crime!
- Particularly low-status men with issues about their gender role or place in social hierarchy
- Most terrorists, mass shooters commit violent crime against women first
- Misogyny is strongly linked to alt-right movement; see Gamergate
- Links to cybercrime too

Social Psychology and Marketing

- Reciprocation can be used to draw people in (even monkeys to tit-for-tat)
- Use social proof: people like to do what others do
- They buy from people they can relate to
- They also like to defer to authority
- Get a commitment and follow through (people want to be consistent)
- See Cialdini's "Influence Science and Practice"

Context and Framing

- Framing effects include the estate agent who shows you a crummy house first
- Take along an ugly friend on a double date ...
- Get user fixated on task completion (e.g. finding why there's suddenly a new payee on your PayPal account)
- Advance fee frauds take this to extreme lengths!
- Risk salience is hugely dependent on context! E.g. CMU experiment on privacy

Fraud psychology

- All the above plus
 - Appeal to the mark's kindness
 - Appeal to the mark's dishonesty
 - Distract them so they act automatically
 - Arouse them so they act viscerally
- See "The Real Hustle" videos on YouTube
- For the gory details, see Modic and Lea, or Kevin Mitnick's 'Art of Deception'

Economics versus psychology

- Most people don't worry enough about computer security
- How could this be fixed, and why is it not likely to be?
- Most people worry too much about terrorism
- How could this be fixed, and why is it not likely to be?

Behavioural economics

- People make buying decisions with the emotions and rationalise afterwards
- Mostly we're too busy to research each purchase and in the ancestral evolutionary environment we had to make flight-or-fight decisions quickly
- The older parts of the brain kept us alive for millions of years before we developed analytical thought (see Kahneman, "Thinking Fast and Slow")
- Their reflexes appear in mental shortcuts such as quality = price and quality = scarcity

People offered £10 or a 50% chance of £20 usually prefer the former; if offered a loss of £10 or a 50% chance of a loss of £20 they tend to prefer the latter!

Framing decisions about risk

 Decisions are heavily influenced by framing. E.g. the 'Asian disease problem' where the subject is making decisions on vaccination. Two options put to subjects. First:

A: "200,000 lives will be saved"

B: "with p=1/3, 600,000 saved; but p=2/3 none saved"

- Here 72% choose A over B!
- Second option is

C: "400,000 will die"

D: "with p =1/3, no-one will die, p=2/3, 600,000 die"

- Here 78% prefer D over C!
- This is also why marketers talk 'discount' or 'saving' and fraudsters know that people facing losses take more risks

Risk misperception – practice

- Why do we overreact to terrorism?
 - Risk aversion / status quo bias
 - 'Availability heuristic' easily-recalled data used to frame assessments
 - Our behaviour evolved in small social groups, and we react against the out-group
 - Mortality salience greatly amplifies this
 - We are also sensitive to agency, hostile intentions
 - Terrorists maximise the threat; police & politicians too
- See book chapters 2, 24

Usability for employees

- 'Blame and train' is not the best approach!
- People will spend only so much time obeying rules – the compliance budget – so understand it, and choose the rules that matter
- Rule violations are often an easier way of working, and sometimes necessary, so watch them, measure them and adapt to them
- The 'right' way of working should be easiest; the defaults should be safe

Usability for the public: defaults

- What actions do you make natural?
- Most people won't opt in, or opt out; they go with the default
 - Governments try to set socially optimal defaults (e.g. you must opt out of pensions)
 - Facebook privacy settings: advertiser-friendly?
- Where else do private incentives clash with public goods?

Where should the path be?

Affordances: Johnny Can't Encrypt

Why Johnny Can't Encrypt: A Usability Evaluation of PGP 5.0

Alma Whitten School of Computer Science Carnegie Mellon University Pittsburgh, PA 15213 alma@cs.cmu.edu

J. D. Tygar¹ EECS and SIMS University of California Berkeley, CA 94720 tygar@cs.berkeley.edu

Abstract

1 Introduction

User errors cause or contribute to most computer security failures, yet user interfaces for security still tend to be clumsy, confusing, or near-nonexistent. Is this simply due to a failure to apply standard user interface design techniques to security? We argue that, on the contrary effective security requires a different

Security mechanisms are only effective when used correctly. Strong cryptography, provably correct protocols, and bug-free code will not provide security if the people who use the software forget to click on the encrypt button when they need privacy, give up on a communication protocol because they are too confused

Users' mental models

- Explore how your users see the problem the 'folk beliefs'
 - threats seen as 'viruses' which could be mischievous, or crime tools;
 - 'hackers' who may be seen as graffiti artists or burglars or targeting big fish;
 - Or simply as 'bad neighbourhoods' online!
- People are more likely to follow security advice consistent with their mental model

Passwords

- Cheapest way to authenticate, but 3 issues:
 - Will users enter passwords correctly?
 - Will they remember them, or will they choose weak ones or write them down?
 - Can they be tricked into revealing them?
- Advice is often like 'choose something you can't remember and don't write it down'
- We know lots about password / PIN design failures! See SE chapter 3 for more

Externalities

- One firm's action has side-effects for others
- Password sharing a conspicuous example
- Bulk password compromise is too common
- Everyone wants recovery questions too (and can leak them by the million when hacked)
- Firms train customers in unsafe behaviour such as clicking on external links
- Much 'training' amounts to victim blaming

Usability for developers

- Many security bugs are due to tools that are too hard to use safely
 - The C programming language
 - Crypto APIs that default to electronic code book mode (including MS and Arm offerings)
- Many more arise when busy programmers copying insecure code snippets from online forums
- Usability for developers is now the most rapidlygrowing area of security usability research and practice!