
Secure Programming Lecture 2:
Landscape

David Aspinall

Informatics @ Edinburgh



Course overview reminder

General organisation:

1. Threats
2. Vulnerabilities
3. Defences
4. Processes
5. Methods

We’ll look at details under each of these, in various
orders and combinations.



Introduction

This lecture introduces the industry context behind
software security vulnerability management.

▶ threat in a general setting
▶ vulnerability an example and its origin
▶ defence timeline of notifications, responses
▶ process security advisories and CVE-IDs
▶ method an organisational software security strategy



Outline

An example vulnerability: overflow in X server

Vulnerabilities from the outside

Common Vulnerabilities and Exposures (CVEs)

Building Security In with BSIMM

Summary



Threat

General aim: services running on Unix systems should
be robust against local and remote attackers.

Otherwise: attackers may exploit a service to cause a
DoS attack, gain access to a system, etc.

For a specific system, a threat analysis should consider
the kinds of attackers and their motives (local? remote?
what is being protected?) and then all the services
running on the system.

Question. What’s the easiest form of defence?



A Vulnerability

A security review should first discover (and then
monitor) relevant published security advisories.

For high value situations (and application code),
dedicated review may be needed.

Jan. 7, 2014 - Stack buffer overflow in parsing of BDF
font files in libXfont

CVE-2013-6462: An authenticated X client can cause
an X server to read a font file that overflows a buffer on
the stack in the X server, potentially leading to crash
and/or privilege escalation in setuid servers. The fix is
included in libXfont 1.4.7. See the advisory for more
details.



What is a BDF file?

STARTFONT 2.1
COMMENT
COMMENT Copyright (c) 1999, Thomas A. Fine
COMMENT
...
FONT -atari-small
SIZE 11 75 75
FONTBOUNDINGBOX 4 8 0 -1
STARTCHAR C000
ENCODING 0
SWIDTH 1 0
DWIDTH 4 0
BBX 4 8 0 -1
BITMAP
00
00
...

▶ BDF = Bitmap Distribution Format
▶ A (mostly) obsolete font format by Adobe



Advisory: Description
Scanning of the libXfont sources with the cppcheck
static analyzer included a report:
[lib/libXfont/src/bitmap/bdfread.c:341]: (warning)

scanf without field width limits can crash...

Evaluation of this report by X.Org developers concluded
that a BDF font file containing a longer than expected
string could overflow the buffer on the stack. Testing
in X servers built with Stack Protector resulted in an
immediate crash when reading a user-provided specially
crafted font.

As libXfont is used to read user-specified font files in all X
servers distributed by X.Org, including the Xorg server
which is often run with root privileges or as setuid-root in
order to access hardware, this bug may lead to an
unprivileged user acquiring root privileges in some
systems.



Advisory: Affected Versions

This bug appears to have been introduced in the initial
RCS version 1.1 checked in on 1991/05/10, and is
thus believed to be present in every X11 release
starting with X11R5 up to the current libXfont 1.4.6.
(Manual inspection shows it is present in the sources
from the X11R5 tarballs, but not in those from the X11R4
tarballs.)



The vulnerability in the code

338 char charName[100];
339 int ignore;
340

341 if (sscanf((char *) line, "STARTCHAR %s", charName) != 1) {
342 bdfError("bad character name in BDF file\n");
343 goto BAILOUT; /* bottom of function, free and return error */
344 }



The vulnerability in the code
338 char charName[100];
339 int ignore;
340

341 if (sscanf((char *) line, "STARTCHAR %s", charName) != 1) {
342 bdfError("bad character name in BDF file\n");
343 goto BAILOUT; /* bottom of function, free and return error */
344 }

SYNOPSIS

#include <stdio.h>

int sscanf(const char *str, const char
*format, ...);

DESCRIPTION

sscanf() scans input from the character string pointed
to by str, according to format string. This may contain
conversions; results are stored in locations pointed to by
the pointer arguments that follow format.



Advisory: Fix
diff --git a/src/bitmap/bdfread.c b/src/bitmap/bdfread.c
index e2770dc..e11c5d2 100644
--- a/src/bitmap/bdfread.c
+++ b/src/bitmap/bdfread.c
@ -338,7 +338,7 @ bdfReadCharacters(FontFilePtr file, FontPtr pFont, bdfFileState *pState,

char charName[100];
int ignore;

- if (sscanf((char *) line, "STARTCHAR %s", charName) != 1) {
+ if (sscanf((char *) line, "STARTCHAR %99s", charName) != 1) {

bdfError("bad character name in BDF file\n");
goto BAILOUT; /* bottom of function, free and return error */

}

The text above is an example of a context diff which shows the
difference between two file versions. The patch command can be
used to update the older file given this text. You need to know how
to make and apply patches for this course. See ‘man patch‘ on a
Linux/Unix system.



Defences

Options:

▶ Disable service
▶ Repair service: downstream updates
▶ Mitigate impact of attack

In running systems:

▶ Have there been past attacks?
▶ Can we check for future ones?



Outline

An example vulnerability: overflow in X server

Vulnerabilities from the outside

Common Vulnerabilities and Exposures (CVEs)

Building Security In with BSIMM

Summary



Vulnerability and attacks timeline



Security advisories

Security advisories (aka bulletins) are issued by
software vendors

▶ public feeds, also private at earlier stages
▶ advance notification to high-value customers,

security companies
▶ maybe before patches are available
▶ (Q. is that a good idea?)

▶ public advisory usually when update available

Various people (sys admins, downstream software devs,
users. . . ) should monitor and act on advisories.



Security advisory format

Each vendor has own format. Typical information:

▶ Name, date, unique identification
▶ Criticality
▶ Affected products
▶ Solution

Varying amounts of information given:

▶ enough information to construct an exploit?
▶ if not, attackers may reverse engineer

patches/updates anyway
▶ disclosure has to be planned carefully
▶ typically by coordinated disclosure

https://en.wikipedia.org/wiki/Full_disclosure_%28computer_security%29#Coordinated_disclosure


Advisory for libXfont vulnerability

Jan. 7, 2014 - Stack buffer overflow in parsing of BDF
font files in libXfont

CVE-2013-6462: An authenticated X client can cause
an X server to read a font file that overflows a buffer on
the stack in the X server, potentially leading to crash
and/or privilege escalation in setuid servers. The fix is
included in libXfont 1.4.7. See the advisory for more
details.



Advisory on xorg-announce

X.Org Security Advisory: CVE-2013-6462: Stack buffer overflow in
parsing of BDF font files in libXfont

Alan Coopersmith alan.coopersmith at oracle.com
Tue Jan 7 08:43:23 PST 2014

X.Org Security Advisory: January 7, 2014 - CVE-2013-6462
Stack buffer overflow in parsing of BDF font files in libXfont
==============================================================

Description:
============

Scanning of the libXfont sources with the cppcheck static analyzer
included a report of:

[lib/libXfont/src/bitmap/bdfread.c:341]: (warning)
scanf without field width limits can crash with huge input data.



Advisory on Red Hat enterprise-watch-list
-----BEGIN PGP SIGNED MESSAGE-----
Hash: SHA1

=====================================================================
Red Hat Security Advisory

Synopsis: Important: libXfont security update
Advisory ID: RHSA-2014:0018-01
Product: Red Hat Enterprise Linux
Advisory URL: https://rhn.redhat.com/errata/RHSA-2014-0018.html
Issue date: 2014-01-10
CVE Names: CVE-2013-6462
=====================================================================

1. Summary:

Updated libXfont packages that fix one security issue are now
available for Red Hat Enterprise Linux 5 and 6.

The Red Hat Security Response Team has rated this update as having
important security impact.
...



2. Relevant releases/architectures:

RHEL Desktop Workstation (v. 5 client) - i386, x86_64
Red Hat Enterprise Linux (v. 5 server) - i386, ia64, ppc, s390x, x86_64
Red Hat Enterprise Linux Desktop (v. 5 client) - i386, x86_64
Red Hat Enterprise Linux Desktop (v. 6) - i386, x86_64
Red Hat Enterprise Linux Desktop Optional (v. 6) - i386, x86_64
Red Hat Enterprise Linux HPC Node (v. 6) - x86_64
Red Hat Enterprise Linux HPC Node Optional (v. 6) - x86_64
Red Hat Enterprise Linux Server (v. 6) - i386, ppc64, s390x, x86_64
Red Hat Enterprise Linux Server Optional (v. 6) - i386, ppc64, s390x, x86_64
Red Hat Enterprise Linux Workstation (v. 6) - i386, x86_64
Red Hat Enterprise Linux Workstation Optional (v. 6) - i386, x86_64



3. Description:

The libXfont packages provide the X.Org libXfont runtime
library. X.Org is an open source implementation of the X Window
System.

A stack-based buffer overflow flaw was found in the way the
libXfont library parsed Glyph Bitmap Distribution Format (BDF)
fonts. A malicious, local user could exploit this issue to
potentially execute arbitrary code with the privileges of the
X.Org server. (CVE-2013-6462)

Users of libXfont should upgrade to these updated packages, which
contain a backported patch to resolve this issue. All running
X.Org server instances must be restarted for the update to take
effect.



4. Solution:

Before applying this update, make sure all previously-released
errata relevant to your system have been applied.

This update is available via the Red Hat Network. Details on how
to use the Red Hat Network to apply this update are available at
https://access.redhat.com/kb/docs/DOC-11259

5. Bugs fixed (https://bugzilla.redhat.com/):

1048044 - CVE-2013-6462 libXfont: stack-based buffer overflow flaw
when parsing Glyph Bitmap Distribution Format (BDF) fonts



6. Package List:

Red Hat Enterprise Linux Desktop (v. 5 client):

Source:
ftp://ftp.redhat.com/pub/redhat/linux/enterprise/5Client/en/os/SRPMS/libXfont-1.2.2-1.0.5.el5_10.src.rpm

i386:
libXfont-1.2.2-1.0.5.el5_10.i386.rpm
libXfont-debuginfo-1.2.2-1.0.5.el5_10.i386.rpm
...
...



7. References:

https://www.redhat.com/security/data/cve/CVE-2013-6462.html
https://access.redhat.com/security/updates/classification/#important

8. Contact:

The Red Hat security contact is <secalert redhat com>. More
contact details at
https://access.redhat.com/security/team/contact/

Copyright 2014 Red Hat, Inc.
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v1.4.4 (GNU/Linux)

iD8DBQFSz8HSXlSAg2UNWIIRAvo5AJ4976ATNgp8mmoyRgObDFnCvOP4zACfYWJc
f9VhkwpGzE3y3jtSD9fupVg=
=T7Wm
-----END PGP SIGNATURE-----



Example: HP Data Protector

http://h20565.www2.hp.com/portal/site/hpsc/template.PAGE/public/kb/docDisplay/?spf_p.tpst=kbDocDisplay&spf_p.prp_kbDocDisplay=wsrp-navigationalState%3DdocId%253Demr_na-c03822422-1%257CdocLocale%253D%257CcalledBy%253D&javax.portlet.begCacheTok=com.vignette.cachetoken&javax.portlet.endCacheTok=com.vignette.cachetoken


What is HP Data Protector?



How was this vulnerability found?

▶ Zero Day Initiative, started by TippingPoint, a
network security company
▶ part of 3Com, now HP

▶ Idea of crowd-sourcing vulnerability discovery
▶ Finding many vulnerabilities in enterprise software
▶ HP, Microsoft, CISCO, . . .

▶ Incentive programme rewarding participants
▶ $ reward, bonuses like DEFCON attendance
▶ advantages: independence, wider knowledge
▶ and presumably cheaper than direct employment

http://www.zerodayinitiative.com/


Outline

An example vulnerability: overflow in X server

Vulnerabilities from the outside

Common Vulnerabilities and Exposures (CVEs)

Building Security In with BSIMM

Summary



What is CVE?

▶ Started in 1999, originally at CERT
▶ CVE = Common Vulnerability Enumeration

▶ Aim: standardise identification of vulnerabilities
▶ vendor’s own schemes: confusion, duplication

▶ Each vendor/distributor has own advisory channel
▶ CVE allows cross referencing, public standard ID
▶ Users or customers can check how CVEs are handled

▶ CVEs handled by MITRE, a US R& D outfit
▶ CVE = Common Vulnerabilities and Exposures

▶ US National Vulnerability Database, NVD at NIST
▶ CVEs feed the NVD

▶ ITU-T 2011: X.CVE international recommendation

http://www.cert.org
http://cve.mitre.org
https://nvd.nist.gov/
http://www.itu.int/en/about/


Vulnerabilities versus Exposures

Vulnerability A mistake that can be used by a hacker to
violate a “reasonable” security policy for a
system (e.g., executing commands as another
user, violating access restrictions, conducting a
DoS attack)

Example: smurf vulnerability (ping server
responds to broadcast address)

Exposure A system configuration issue or mistake in
software that can be used by a hacker as a
stepping-stone into a system or network, e.g.,
gathering information, hiding activities.

Example: running open ‘finger‘ service; allows
attacker to probe network



CVE Identifiers

Consist of:

▶ CVE ID (number): CVE-1999-0067
▶ Brief description of vulnerability or exposure
▶ References, e.g., to reports or advisories



Creating CVE Identifiers

1. Discover a potential V or E
2. Get a CVE Numbering Authority to give a number
▶ MITRE, big vendors (Apple, Google, MS, Ubuntu,. . . )
▶ Numbers reserved in blocks; “instantly” available

3. CVE ID number shared among disclosure parties
4. Advisory published, including CVE-ID number
5. MITRE updates master list

Only published CVE-ID Numbers are kept in master list.



CVE Compatibility

▶ Standard for “interoperability” or “comparability”
▶ For products and services
▶ Has some official requirements certified by MITRE
▶ ownership by legal entity
▶ responsibility, answering to reviews

▶ Capability required for tools, web sites
▶ CVE searchable
▶ Use standard document formats



Outline

An example vulnerability: overflow in X server

Vulnerabilities from the outside

Common Vulnerabilities and Exposures (CVEs)

Building Security In with BSIMM

Summary



BSIMM: Building Security In Maturity Model



BSIMM: Building Security In Maturity Model

▶ BSIMM is a Maturity Model for real-world best
practices in software-producing companies
▶ examines Software Security Initiatives (SSIs)
▶ data-driven: defined by survey results
▶ provides a “measuring stick”, state-of-the-art

▶ Introduced by Gary McGraw and others
▶ Author of Software Security: Building Security In

▶ Now at BSIMM-13, September 2022. Has 125
software sec activities.
▶ Inspired by Capability Maturity Model (CMM)

(late 80s-90s)
▶ model of software development processes
▶ maturity = degree of formality/rigour of process
▶ 5 Levels: chaotic, repeatable, defined, managed,

optimizing

http://bsimm.com/
https://www.bsimm.com/content/dam/bsimm/reports/bsimm13.pdf


BSIMM goals

For organisations starting/running a Software Security
Initiative, BSIMM aims to:

▶ Inform risk management decisions
▶ Clarify “right thing to do” for those involved
▶ Reduce costs via standard, repeatable processes
▶ Improve code quality

This is done by planning a Software Security Initiative,
implementing activities selected from BSIMM. Activities
can be roled out according to the maturity level of the
organisation.



Implementing a SSI

A Software Security Initiative may be a serious effort
for a large organisation to implement, and require a big
budget.

Large companies can have:

▶ tens of thousands of software developers
▶ hundreds or thousands of applications in

development
▶ similarly many applications in deployment or sale

Systematic, explicit organisation of security goals are
needed to mange software security effectively.



BSIMM Software Security Framework

BSIMM defines a Software Security Framework to
describe SSIs

▶ 4 domains covering 12 practices

▶ Each practice involves numerous activities

▶ Activities are assigned maturity levels 1–3

▶ 1: most mature, common everywhere
▶ 3: least mature, emerging (or expiring) activity

▶ Covers 125 activities

▶ New activities added when they appear in >1 org



BSIMM domains



BSIMM evolves over time

Results are used to identify most common (core)
activities in each practice and discover new activities, as
well as adjust levels and possibly remove activities.

Example updates:

BSIMM 6 CMVM3.4 Operate a bug bounty programme
added.

BSIMM 7 SE3.4 Use application containers
BSIMM 9 SE3.7 Ensure cloud security basics added.

Secure coding standards shifts to level 3.
BSIMM 12: SE3.8 App composition analysis on code

repos added.



Outline

An example vulnerability: overflow in X server

Vulnerabilities from the outside

Common Vulnerabilities and Exposures (CVEs)

Building Security In with BSIMM

Summary



Review questions

Server vulnerabilities

▶ Explain why services running on Unix systems
should be robust against both local and remote
attackers, even if local users are trusted.

Patches, updates, defences

▶ Explain the lifecycle of a software vulnerability.
Consider cases where the vulnerability is found by a
“black-hat” or by a “white-hat” first.

Software security processes

▶ Explain vendor security advisories and CVEs.
▶ Discuss the role of BSIMM in improving software

security development practices in industry and give
example activites in each of its 12 practices.


	An example vulnerability: overflow in X server
	Vulnerabilities from the outside
	Common Vulnerabilities and Exposures (CVEs)
	Building Security In with BSIMM
	Summary

