
Secure Programming Lecture 4: Memory
Corruption II (Stack & Heap Overflows)

David Aspinall

Informatics @ Edinburgh

Classifying memory corruption errors

Spatial memory errors

An error happens because memory access goes outside
the region of memory that a data item is intended to
occupy.

Temporal memory errors

An error happens because memory access happens in
some region of memory that the program ought not
currently have access to.

This lecture focuses on spatial errors.

Buffer overflow

Buffer overflow is a common programming error.

▶ Simple cause:
▶ putting m bytes into a buffer of size n, for m>n
▶ corrupts the surrounding memory

▶ Simple fix:
▶ check size of data before/when writing

Overflow exploits, where corruption performs something
specific the attacker wants, can be very complex.

We’ll study examples to explain how devastating
overflows can be, looking at simple (mainly historical)
stack overflows and heap overflows.

Examples will use Linux/x86 to demonstrate; principles
are similar on other OSes/architectures.

Outline

Stack variable corruption

Executable code exploits

Shellcode

Redirecting execution

Heap overflows

Specific heap attacks

General heap attacks

Summary

How the stack works (reminder)

Stack (frames)
↑ high addresses

...

Data

Code
↓ low addresses

Memory

Corrupting stack variables

Local variables are put close together on the stack.

▶ If a stray write goes beyond the size of one variable
▶ . . . it can corrupt another

Application scenario

int authenticate(char *username, char *password) {

int authenticated; // flag, non-zero if authenticated
char buffer[1024]; // buffer for log message

authenticated = verify_password(username, password);

if (authenticated == 0) {
sprintf(buffer,

"Incorrect password for user %s\n",
username);

log("%s",buffer);
}
return authenticated;

}

▶ Vulnerability in authenticate() call to sprintf().
▶ If the username is longer than 995 bytes, data will

be written past the end of the buffer.

Possible stack frame before exploit

...

password: 0x080B8888

username: 0x080B4444

saved EIP (return addr)

saved EBP (frame ptr)

authenticated: 0x00000000

(undefined contents)

buffer start addr

buffer[1024]

...

1235

AAAAAA. . .

Stack frame after exploit

password: 0x080B8888

username: 0x080B4444

saved EIP (return addr)

saved EBP (frame ptr)

authenticated: 0x0000000A

AAAA

...

AAAA buffer start addr

buffer

1235

AAAAAA. . .

▶ If username is >995 letters long, authenticated is
corrupted and may be set to non-zero.
▶ E.g., char 1024=‘\n’, the low byte becomes 10.

Local variable corruption remarks

Tricky in practice:

▶ location of variables may not be known
▶ memory addresses can vary between invocations
▶ C standards don’t specify stack layout
▶ compiler moves things around, optimises layout

▶ effect depends on behaviour of application code

A more predictable, general attack works by corrupting
the fixed information in every stack frame: the frame
pointer and return address.

Outline

Stack variable corruption

Executable code exploits

Shellcode

Redirecting execution

Heap overflows

Specific heap attacks

General heap attacks

Summary

Classic stack overflow exploit

...

return address

...

attack code

...

buffer

...

The malicious argument
overwrites all of the space
allocated for the buffer, all the
way to the return address
location.
The return address is altered
to point back into the stack,
somewhere before the attack
code.
Typically, the attack code
executes a shell.

Attacker controlled execution

By over-writing the return address, the attacker may
either:

1. set it to point to some known piece of the
application code, or code inside a shared library,
which achieves something useful, or

2. supply his/her own code somewhere in memory,
which may do anything, and arrange to call that.

The second option is the most general and powerful.

How does it work?

Arbitrary code exploit

The attacker takes these steps:

1. write code useful for an attacker
2. store executable code somewhere in memory
3. use stack overflow to direct execution there

The attack code is known as shellcode. Typically, it
launches a shell or network connection.

Shellcode is ideally:

▶ small and self-contained
▶ position independent
▶ free of ASCII NUL (0x00) characters

Question. Why?

Arbitrary code exploit

1. write code useful for an attack
2. store executable code somewhere in memory
3. use stack overflow to direct execution there

Outline

Stack variable corruption

Executable code exploits

Shellcode

Redirecting execution

Heap overflows

Specific heap attacks

General heap attacks

Summary

Building shellcode

Consider spawning a shell in Unix. The code looks like
this:
#include <unistd.h>
...
char *args[] = { "/bin/sh", NULL };
execve("/bin/sh", args, NULL)

▶ execve() is part of the Standard C Library, libc
▶ it starts a process with the given name and

argument list and the environment as the third
parameter.

We want to write (relocatable) assembly code which
does the same thing: constructing the argument lists
and then invoking the execve function.

Invoking system calls

To execute a library function, the code would need to
find the location of the function.

▶ for a dynamically loaded library, this requires
ensuring it is loaded into memory, negotiating with
the linker
▶ this would need quite a bit of assembly code

It is easier to make a system call directly to the
operating system.

▶ luckily, execve() is a library call which corresponds
exactly to a system call.

Invoking system calls

Linux system calls (32 bit x86) operate like this:

▶ Store parameters in registers EBX, ECX, . . .
▶ Put the desired system call number into AL
▶ Use the interrupt int 128 to trigger the call

Invoking a shell

Here is the assembly code for a simple system call
invoking a shell:

.section .rodata # data section
args:

.long arg # char *["/bin/sh"]

.long 0 #
arg:

.string "/bin/sh"

.text

.globl main
main:

movl $arg, %ebx
movl $args, %ecx
movl $0, %edx
movl $0xb, %eax
int $0x80 # execve("/bin/sh",["/bin/sh"],NULL)
ret

From assembly to shellcode

However, this is not yet quite shellcode: it contains
hard-wired (absolute) addresses and a data section.

Question. How could you turn this into position
independent code without separate data?

From assembly to shellcode

Moreover, we need to find the binary representation of
the instructions (i.e., the compiled shell code).

This will be the data that we can then feed back into our
attack.

$ gcc shellcode.s -o shellcode.out
$ objdump -d shellcode.out
...
080483ed <main>:
80483ed: bb a8 84 04 08 mov $0x80484a8,%ebx
80483f2: b9 a0 84 04 08 mov $0x80484a0,%ecx
80483f7: ba 00 00 00 00 mov $0x0,%edx
80483fc: b8 0b 00 00 00 mov $0xb,%eax
8048401: cd 80 int $0x80
8048403: c3 ret

▶ We take the hex op code sequence bb a8 84... etc
and encode it as a string (or URL, filename, etc) to
feed into the program as malicious input.

There’s a bit of an art to crafting shellcode for different
architectures and scenarios. Handily many examples are
online. For example, at shell-storm.org/shellcode or
www.exploit-db.com/shellcodes.

https://www.exploit-db.com/shellcodes

Outline

Stack variable corruption

Executable code exploits

Shellcode

Redirecting execution

Heap overflows

Specific heap attacks

General heap attacks

Summary

Arbitrary code exploit

1. write code useful for an attacker
2. store executable code somewhere in memory
3. use stack overflow to direct execution there

Two options:

▶ shellcode on stack
▶ shellcode in another part of the program data

Problem in both cases is :

▶ how to find out where the code is?

Attack code on stack: the NOP sled

...

corrupted ret. addr.

...

attack code

NOP

...

NOP

The exact address of the
attack code in the stack is hard
to guess.
The attacker can increase the
chance of success by allowing
a range of addresses to work.
The overflow uses a NOP sled,
which the CPU execution
"lands on", before being
directed to the attack code.

Attack code elsewhere in memory
...

password: 0x080B8888

username: 0x080B4444

saved EIP 0x0BADC0DE

saved EBP 0x41414141

authenticated: 0x41414141

AAAA

...

AAAA buffer start addr

buffer

user-controlled data
seeded with

executable code

▶ Various (sometimes intricate) possibilities
▶ . . . in an environment variable, modifying function

pointers, corrupting caller’s saved frame pointer

Stack smashing without shellcode

Sometimes an attacker cannot directly inject code which
gets executed, but can still corrupt return addresses.

Return to library (ret2libc)

The attacker overflows a buffer causing the return
instruction to jump to invoke system() with an
argument pointing to /bin/sh.

Return-oriented Programming (ROP)

Sequences of instructions (gadgets) from library code
are assembled together to manipulate registers,
eventually to invoke an library function or even to make
a Turing-complete language.

Outline

Stack variable corruption

Executable code exploits

Shellcode

Redirecting execution

Heap overflows

Specific heap attacks

General heap attacks

Summary

Heap overflows: overview

The heap is the region of memory that a program uses
for dynamically allocated data.

The runtime or operating system provides memory
management for the heap.

With explicit memory management, the programmer
uses library functions to allocate and deallocate regions
of memory.

Memory safety and undefined behaviour
Memory safety

A programming language enforces memory safety if it
ensures that reads and writes stay within clearly defined
memory areas.

Undefined behaviour

A programming language specification defines the
meaning of programs. Without memory safety, the
specification may say the meaning of an illegal memory
access is undefined.

Question. What is the benefit of using "undefined"
behaviour in a language spec?

Question. What risks do you see for software security
with "undefined" behaviour?

Memory allocation in C

malloc(size) tries to allocate a space of size bytes.

▶ It returns a pointer to the allocated region
▶ . . . of type void* which the programmer can cast to

the desired pointer type
▶ or it fails and returns a NULL pointer
▶ The memory is uninitialised so should be written to

before being read from

Question. Which points above contribute to (memory)
unsafe behaviour in C?

Memory allocation in C

calloc(size) behaves like malloc(size) but it also
initialises the memory, clearing it to zeroes.

Question. Suppose we allocate a string buffer, and
immediately assign the empty string to it.

What security reason may there be to prefer calloc()
over malloc()?

Memory allocation in C

free(ptr) frees the previously allocated space at ptr.

▶ No return value (void)
▶ If it fails (ptr a non-allocated value), what happens?
▶ if ptr is NULL, nothing
▶ “undefined” otherwise,
▶ program may abort, or might carry on and let bad

things happen
▶ What happens if ptr is dereferenced after being

freed?
▶ depends on behaviour of allocator

Question. Suppose we accidently call free(ptr)
before the final dereference of ptr() but before another
call to malloc(). Is that safe?

Outline

Stack variable corruption

Executable code exploits

Shellcode

Redirecting execution

Heap overflows

Specific heap attacks

General heap attacks

Summary

Simple heap variable attack

Without memory safety, heap-allocated variables may
overflow from one to another.

char *user = (char *)malloc(sizeof(char)*8);
char *adminuser = (char *)malloc(sizeof(char)*8);

strcpy(adminuser, "root");

if (argc > 1)
strcpy(user, argv[1]);

else
strcpy(user, "guest");

/* Now we'll do ordinary operations as "user" and
create sensitive system files as "adminuser" */

▶ Is it possible to overflow user and change
adminuser ?

Simple heap variable attack

Problem: how do we know where the allocations will be
made?

▶ Heap allocator is free to allocate anywhere, not
necessarily in adjacent memory

Let’s investigate what happens on Linux x86, glibc.

(for a particular version, on a particular day, . . .)

Simple heap variable attack

#include <stdlib.h>
#include <string.h>
#include <stdio.h>

void main(int argc, char *argv[]) {

char *user = (char *)malloc(sizeof(char)*8);
char *adminuser = (char *)malloc(sizeof(char)*8);

strcpy(adminuser, "root");

if (argc > 1)
strcpy(user, argv[1]);

else
strcpy(user, "guest");

printf("User is at %p, contains: %s\n", user, user);
printf("Admin user is at %p, contains: %s\n", adminuser, adminuser);

}

$ gcc useradminuser.c -o useradminuser.out
$./useradminuser.out
User is at 0x9504008, contains: guest
Admin user is at 0x9504018, contains: root

$./useradminuser.out
User is at 0x9483008, contains: guest
Admin user is at 0x9483018, contains: root

$./useradminuser.out frank
User is at 0x8654008, contains: frank
Admin user is at 0x8654018, contains: root

▶ Buffers not adjacent, there’s some extra space
▶ Addresses not identical each run
▶ But admin user is stored higher in memory!

Let’s try overflowing. . . .
$./useradminuser.out frank........david
User is at 0x9405008, contains: frank........david
Admin user is at 0x9405018, contains: id

Count more carefully:
$./useradminuser.out frank56789ABCDEFdavid
User is at 0x9f0b008, contains: frank56789ABCDEFdavid
Admin user is at 0x9f0b018, contains: david

Whoa!

Question. Can you think of a way to prevent this
attack?

Let’s try overflowing. . . .
$./useradminuser.out frank........david
User is at 0x9405008, contains: frank........david
Admin user is at 0x9405018, contains: id

Count more carefully:
$./useradminuser.out frank56789ABCDEFdavid
User is at 0x9f0b008, contains: frank56789ABCDEFdavid
Admin user is at 0x9f0b018, contains: david

Whoa!

Question. Can you think of a way to prevent this
attack?

Let’s try overflowing. . . .
$./useradminuser.out frank........david
User is at 0x9405008, contains: frank........david
Admin user is at 0x9405018, contains: id

Count more carefully:
$./useradminuser.out frank56789ABCDEFdavid
User is at 0x9f0b008, contains: frank56789ABCDEFdavid
Admin user is at 0x9f0b018, contains: david

Whoa!

Question. Can you think of a way to prevent this
attack?

Remarks about heap variable attack

▶ same kind of attack is possible for (mutable) global
variables, which are allocated statically in another
memory segment
▶ this is an application-specific attack, need to find

security-critical path near overflowed variable
▶ need to be lucky: overwriting intervening memory

might cause crashes later, before the program gets
to use the intentionally corrupted data

Is there a more generic attack for the heap?

Outline

Stack variable corruption

Executable code exploits

Shellcode

Redirecting execution

Heap overflows

Specific heap attacks

General heap attacks

Summary

Heap allocator implementation

A common heap implementation is to use blocks laid out
contiguously in memory, with a free list intermingled.

Heap blocks have headers which give information such
as:

▶ size of previous block
▶ size of this block
▶ flags, e.g., in-use flag
▶ if not in use, pointers to next/previous free block

The doubly-linked free list makes finding spare memory
fast for the malloc() operation.

Heap allocator implementation

typedef struct mallocblock {
struct mallocblock *next;
struct mallocblock *prev;
int prevsize;
int thissize;
int freeflag;
// malloc space follows the header

} mallocblock_t;

▶ If freeflag is non-zero, the block is in the freelist
▶ Allocator will split blocks and coalesce them again

General heap overflow attack

Rough idea:

▶ Coalescing blocks unlinks them from the free list
▶ Attacker makes unlink() do an arbitrary write!
▶ uses overflow to set next and previous
▶ and set flags to indicate free
▶ unlink() then performs write

Unlinking operation

void unlink(mallocblock_t *element) {
mallocblock_t *mynext = element->next;
mallocblock_t *myprev = element->prev;

mynext->prev = myprev;
myprev->next = mynext;

}

▶ performs two (related) word writes
▶ mynext->prev=*mynext+2, myprev->next=*myprev

▶ attacker arranges at least one of these to be useful

Exercise. Check you understand this: draw a picture of
a doubly linked list and explain how the attacker can
make an arbitrary write.

Writing to arbitrary locations

What locations might the attacker choose?

▶ Global Offset Table (GOT) used to link ELF-format
binaries. Allows arbitrary locations to be called
instead of a library call.
▶ Exit handlers used in Unix for return from main().
▶ Lock pointers or exception handlers stored in the

Windows Process Environment Block (PEB)
▶ Application-level function pointers (e.g. C++ virtual

member tables).

The details are intricate, but library exploits and tookits
are available (e.g., Metasploit).

Heap spraying and browser exploits

Apart from operating system (C code) memory
management, other application runtimes provide
memory allocation features, which may be accessible to
an attacker.

A particular case is in browser-based exploits which
have made use of heaps for managed runtimes such as
JavaScript, VBScript, Flash, HTML5.

Writing shell code to predictable heap locations is
sometimes called heap spraying. This is simple in
concept: string variables manipulated in scripts are
allocated in a heap.

Outline

Stack variable corruption

Executable code exploits

Shellcode

Redirecting execution

Heap overflows

Specific heap attacks

General heap attacks

Summary

Review questions

Stack overflows

▶ Explain how uncontrolled memory writing can let an
attacker corrupt the value of local variables.
▶ Explain how an attacker can exploit a stack overflow

to execute arbitrary code.
▶ Draw an stack during a stack overflow attack with a

NOP sled and shell code, giving addresses

Heap overflows

▶ Describe the API functions used to interface to heap
allocation in C. Give two examples of risky behaviour.
▶ Show how overflowing one heap-allocated variable

can corrupt a second.
▶ Explain how a heap overflow attack can exploit

memory allocation routines to allow arbitrary writes.

Coming next

We’ll look at other kinds of overflow attacks, and some
general protection mechanisms.

The best way to understand these attacks is to try them
out!

We recommend trying the SEED Labs buffer overflow
labs for some good walk-throughs.

https://seedsecuritylabs.org/

References and credits

This lecture included examples from:

▶ M. Dowd, J. McDonald and J. Schuh. The Art of
Software Security Assessment, Addison-Wesley
2007.

http://www.amazon.co.uk/Art-Software-Security-Assessment-Vulnerabilities/dp/0321444426
http://www.amazon.co.uk/Art-Software-Security-Assessment-Vulnerabilities/dp/0321444426

	Stack variable corruption
	Executable code exploits
	Shellcode
	Redirecting execution

	Heap overflows
	Specific heap attacks
	General heap attacks

	Summary

