
Secure Programming Lecture 5: Memory
Corruption III (Countermeasures)

David Aspinall

Informatics @ Edinburgh

Memory corruption recap

Buffer overflow is still one of the most common
vulnerabilities being discovered and exploited in
commodity software.

We’ve seen examples of stack and heap buffer
overflow vulnerabilities due to copying without
checking bounds.

In this lecture we’ll see other memory corruption
vulnerabilities and discuss countermeasures.

Buffer overflow risks have been known for over 30 years.
Is it still a problem? Try searching at https://nvd.nist.gov to see.

https://nvd.nist.gov

Outline

Other memory corruption errors

Out-by-one, overflow, pointer arithmetic

Type confusion errors

Memory corruption countermeasures

Tamper detection

Memory mode protection

Diversification

Defensive programming

Summary

Other memory corruption errors

Copying data from one place to another isn’t the only
source of memory corruption.

Other mistakes can be made by errors with

▶ out-by-one errors
▶ overflowing data values
▶ pointer arithmetic

Exercise. Find and explain an example of a pointer
arithmetic bug leading to a code vulnerability.

Outline

Other memory corruption errors

Out-by-one, overflow, pointer arithmetic

Type confusion errors

Memory corruption countermeasures

Tamper detection

Memory mode protection

Diversification

Defensive programming

Summary

Out-by-one errors

▶ Mistaking the size of array

for (i=0; i<=sizeof(dest); i++)
dest[i]=src[i];

▶ Forgetting to account for string terminator in C

if (strlen(user) > sizeof(buf))
die("user string too long\n");

strcpy(buf, user);

These are typical programming errors.

They may cause exploitable memory corruption,
depending on the rest of the application code.

Integer overflow

Integer overflow (wrap-around) can cause memory
corruption.

Worrying case: bounds calculated from user inputs.
char *make_table(int width, int height, char* defaultrow) {

char *buf;
int i;
int n = width * height;
buf = (char*)malloc(n);
int i;
if (!buf)

return NULL;
for (i=0; i<height; i++)

memcpy(&buf[i*width], defaultrow, width);
}

Exercise. Show that with carefully chosen width and
height, it’s possible to perform a massive overflow.

Outline

Other memory corruption errors

Out-by-one, overflow, pointer arithmetic

Type confusion errors

Memory corruption countermeasures

Tamper detection

Memory mode protection

Diversification

Defensive programming

Summary

Typing discpline

Type Safety

A programming language, analysis tool or runtime is said
to enforce type safety if it has a clearly specified typing
discipline for data values and it ensures that data values
(representations) for types stay within the domain of
those types during program execution.

Question. Can you have Memory Safety without Type
Safety?

Question. Or the other way: Type Safety but not
Memory Safety?

C is not type safe!

C has overly flexible typing:

▶ implicit type conversions, inserted automatically
by the compiler, often for convenience of arithmetic
combining differently sized primitives.
▶ explicit type casts, where the programmer writes

foo = (sometype) bar;
A value in one type is treated as a value of another
type. For pointers, there is no effect: the pointed-to
values are not altered.

Numeric conversions may perform sign extension or
truncation.

Some conversions are implementation defined (i.e., are
not pinned down by the language, so vary depending on
the compiler, platform, etc).

Signed integer comparison vulnerability

int read_user_data(int socketfd) {
int length;
char buffer[1024];
length = get_user_length(socketfd);

if (length>1024) {
error("Input size too large\n");
return -1;

}
if (recv(socketfd, buffer, length)<0) {

error("Read format error\n");
return -1;

}
return 0; // success

}

▶ Here, a negative length defeats the size check. . .
▶ but recv accepts a size_t type, which is unsigned
▶ a negative value becomes a large positive one
▶ . . . and recv() overflows buffer.

Outline

Other memory corruption errors

Out-by-one, overflow, pointer arithmetic

Type confusion errors

Memory corruption countermeasures

Tamper detection

Memory mode protection

Diversification

Defensive programming

Summary

Memory corruption countermeasures

Two basic programming-related countermeasures:

1. Treat the symptoms:
▶ special technologies in execution or compilation
▶ limit the damage that can be done by attacks
▶ uses containment and curtailment

2. Treat the cause:
▶ ensure that code does not contain vulnerabilities
▶ secure programming through code review
▶ security analysis tools to find and fix problems

Question. Why might choice 2 be impossible?

Generic defences

Defensive technologies are not a real substitute for
proper fixes, but:

▶ give defence in depth that can protect in case of new
attacks, malware, regressions to vulnerable code
▶ sometimes code replacement is simply prohibitively

expensive or impossible (e.g., non-upgradeable
firmware) so defences must be put elsewhere.

Exercise. Find and explain some interesting examples
of the latter case.

Defences against overflows

Several generic protection mechanisms have been
invented to prevent overflow attacks and new ones are
evolving.

These reduce the attacker’s chance of reliably exploiting
a bug on the host system.

We will look at:

▶ Tamper detection in software
▶ Memory protection in OS and hardware
▶ Diversification methods

Outline

Other memory corruption errors

Out-by-one, overflow, pointer arithmetic

Type confusion errors

Memory corruption countermeasures

Tamper detection

Memory mode protection

Diversification

Defensive programming

Summary

Canaries on the stack

Stack frame has vulnerable location pointers which are
corrupted in a stack overflow attack. Idea:

▶ wrap frame with protective layer, a “canary”
▶ canary sits below return address
▶ attacker overflows stack buffer to hit return address
▶ necessarily overwrites canary

▶ generated code adds and checks canaries

Early proposal: StackGuard compiler.

https://www.usenix.org/legacy/publications/library/proceedings/sec98/full_papers/cowan/cowan.pdf

Stack without canaries

...

saved EIP (return addr)

saved EBP (frame ptr)

Local variables...

...

Stack with canary
...

saved EIP (return addr)

saved EBP (frame ptr)

canary word(s)

Local variables...

...

The "canary" is special data
written into the stack to detect
unexpected modifications.
If a stack overflow or other
corruption occurs, the canary
may be altered. The compiler
adds extra instructions to
insert canaries and check their
integrity.

Question. How might the mechanism be defeated?

Question. What should happen if an overflow is
detected?

GCC’s Stack Smashing Protector

Consider this C program:
#include <stdio.h>
#include <string.h>

int fun1(char *arg) {
char buffer[1024];
strcpy(buffer,arg);

}

void main(int argc, char *argv[]) {
fun1(argv[1]);

}

Let’s compare the assembler compiled with gcc -S -m32
and gcc -S -m32 -fno-stack-protector.

main: ; code without SSP: gcc -S -m32 -fno-stack-protector
pushl %ebp
movl %esp, %ebp
andl $-16, %esp ; align stack to 16-byte
subl $16, %esp ;
movl 12(%ebp), %eax ; eax = addr of argv
addl $4, %eax ; eax = addr of argv[1]
movl (%eax), %eax ; eax = contents of argv[1]
movl %eax, (%esp) ; push it
call fun1 ;
leave
ret

fun1:
pushl %ebp ; save old frame ptr
movl %esp, %ebp ; set new frame ptr
subl $1048, %esp ; allocate stack space
movl 8(%ebp), %eax ;
movl %eax, 4(%esp) ; push arg (strcpy src)
leal -1032(%ebp), %eax
movl %eax, (%esp) ; push buffer (strcpy dest)
call strcpy
leave
ret

fun1: ; code with SSP (main function stays the same)
; NB: GS register points to per-CPU thread storage

pushl %ebp
movl %esp, %ebp
subl $1064, %esp ; use 16 bytes more this time
movl 8(%ebp), %eax ; fetch arg
movl %eax, -1052(%ebp) ; >> keep a copy in our frame
movl %gs:20, %eax ; >> set EAX=canary value
movl %eax, -12(%ebp) ; >> store near return address
xorl %eax, %eax
movl -1052(%ebp), %eax ; fetch local copy of arg
movl %eax, 4(%esp) ; push it
leal -1036(%ebp), %eax ;
movl %eax, (%esp) ; push buffer
call strcpy
movl -12(%ebp), %edx ; >> EDX=canary from stack
xorl %gs:20, %edx ; >> has it changed?
je .L3 ;
call __stack_chk_fail ; if it has, we'll abort

.L3:
leave
ret

The stack protection spots an overflow with 1026
characters:
$ gcc -m32 overflow.c -o overflow.out
$./overflow.out xxxx
$./overflow.out `perl -e 'print "x"x1025'`
*** stack smashing detected ***: ./overflow.out terminated
Aborted (core dumped)

Exercise. Try this example for yourself, compiling
with/without protection, and stepping through it using
gdb. Draw the stack layout in each case. Make up some
more complex examples and try them out.

Security “arms race” and canaries

Attackers respond to new protection mechanisms by
looking for vulnerabilities in those mechanisms (as well
as new vulns).

For example:

▶ Attack code/probing discovers a constant canary
▶ e.g., canary is 0x0af237ab6, so write that near

return address
▶ Canary defence uses pseudorandom sequence
▶ attacker learns sequence or discovers seed

▶ Canary defences uses cryptographic PRNG
▶ attacker finds where value is stored
▶ finds another exploit to copy it

Stack canary effectiveness

▶ Doesn’t protect against local variable overwriting
▶ related mechanisms reorder local variables

▶ Other attacks work by overwriting parameters
▶ aim to change where subsequent writes occur
▶ overwrite return address, but don’t return

Hardened heap implementations have also been
developed

▶ glibc and Windows since XP SP2 have heap canaries
▶ but application specific heaps, and high-level

language heaps are not covered

Better attacks, better detection

Return-to-libc (ret2libc) and return-oriented
programming (ROP)

▶ key idea: re-use existing executable code
▶ defeats canaries and NX hardware protection

A more powerful defence mechanism is Control-Flow
Integrity, which ensures that code execution follows a
pre-determined call graph.

This can defend against ROP and similar attacks,
depending on the accuracy and granularity of the
enforcement.

Outline

Other memory corruption errors

Out-by-one, overflow, pointer arithmetic

Type confusion errors

Memory corruption countermeasures

Tamper detection

Memory mode protection

Diversification

Defensive programming

Summary

Operating system separation (review)

Isolation different processes have different resources
(address spaces, file systems, . . .)

Sharing resources are shared between processes,
partial isolation. Sharing may be:

▶ all or nothing
▶ mediated with access controls
▶ mediated with usage controls (capabilities)

Concern: granularity of protection.

OSes have provided separation mechanisms since the
early days of multi-user systems. For memory, direct
support was added to the CPU and memory system
hardware.

Hardware memory protection mechanisms

Original mechanisms introduced to provide separation
(mainly for safety) between different programs on
multi-user systems:

▶ Fences: separate memory accesses between OS
and user code (one boundary, one way protection).

▶ Base and bounds registers: enforce separation
between several programs allowing access control
on memory ranges.

▶ Tagged architecture: more fine-grained, tags on
each memory location set access rights to stored
word (R, RW, X). Supervisor mode instructions
required to set tag. Not currently supported in
modern architectures but research on new
CPU-provided hardware capabilities is related.

Memory separation: segmentation & paging
Segmentation splits a program into named

variable-sized logical pieces,
(main,data,module,. . .). Programs use names
and offsets; segment registers and an OS
segment table for indexing.

Paging splits program/data into fixed-sized pieces.
These get mapped onto memory, which is split
into equal sized page frames.

Segmentation mechanisms were introduced mainly to
expand addressable memory ranges for 16-bit CPUs.
Modern OSes use a flat memory model without
hardware-supported segmentation.

Paging is still used to manage memory across different
hardware locations (cache levels, RAM, disk).

Segmentation and paging both have security
features/implications.

Non-executable memory pages

CPUs include R, RW, X protection for memory pages.

▶ x86 series CPUs added page-level XD/NX in 2001-4
▶ Data Execution Prevention: attempt to execute

causes page-fault

If the program keeps code and data separate, shellcode
can be prevented from running when it’s injected into
data regions on the heap or stack.

Apart from C, this may be tricky to use with certain
languages/compilers/interpreters that manipulate
executable code during runtime.

Outline

Other memory corruption errors

Out-by-one, overflow, pointer arithmetic

Type confusion errors

Memory corruption countermeasures

Tamper detection

Memory mode protection

Diversification

Defensive programming

Summary

Address Space Layout Randomization (ASLR)

Diversification: make many versions of same program;
thwarts general attacks that assume some fixed
structure.

ASLR: randomising layout during load time makes it
harder to find data or code locations, breaking
hard-coded static locations. Provided in Linux from 2001
by the PaX Team.

Effectiveness: strong, but doesn’t solve underlying
problem and ASLR implementation becomes target of
attack. Early implementations randomised by small
amounts (e.g. 256 addresses), so attacker could use
brute force (though this may attract attention).

Question. What other things could be diversified as a
defence mechanism?

http://pax.grsecurity.net

EWiM attack model [Oakland 2013]

Non-executable Data /
Instruction Set Randomization

VII.A.

Data Integrity

V.B.

Data Space
Randomization

VII.B.

Data-flow Integrity

VIII.B.

Control-flow Integrity

V.A.

Address Space
Randomization

Code Integrity
VIII.A.

Code Pointer Integrity

Instruction Set
Randomization

VI.

Memory Safety

Information

leak

Make a pointer go

out of bounds

Make a pointer

become dangling

Use pointer

to write (or free)

Use pointer

to read

Modify a

code pointer ...

Output data

variable

… to the address of

shellcode / gadget

Use pointer by

indirect call/jump

Execute injected

shellcode

Execute available

gadgets / functions

Control-flow

hijack attack

Modify

code ...

Code corruption

attack

Modify a

data pointer

Modify a data

variable ...

Data-only

attack

… to the attacker

specified value

Use corrupted

data variable

Use pointer by

return instruction

… to the attacker

specified code

Interpret the

output data

1

2

3

4

5

6

Figure 1. Attack model demonstrating four exploit types and policies mitigating the attacks in different stages

included in the output. The classic example of this attack is
the printf format string bug, where the format string is
controlled by the attacker. By specifying the format string
the attacker creates invalid pointers and reads (and writes)
arbitrary memory locations.

printf(user_input); // input "%3$x" prints the
// 3rd integer on the stack

If an attacker controlled pointer is used to write the
memory, then any variable, including other pointers or even
code, can be overwritten. Buffer overflows and indexing
bugs can be exploited to overwrite sensitive data such as
a return address or virtual table (vtable) pointer. Corrupting
the vtable pointer is an example of the backward loop in
Figure 1. Suppose a buffer overflow makes an array pointer
out of bounds in the first round that is exploited (in Step 3)
to corrupt a nearby vtable pointer in memory in the second
round. When the corrupted vtable pointer is dereferenced (in
Step 2), a bogus virtual function pointer will be used. It is
important to see that with one memory error, more and more
memory errors can be raised by corrupting other pointers.
Calling free() with an attacker controlled pointer can also
be exploited to carry out arbitrary memory writes [19]. Write
dereferences can be exploited to leak information as well.

printf("%s\n", err_msg);

For instance, the attacker is able to leak arbitrary mem-
ory contents in the above line of code by corrupting the
err_msg pointer.

Temporal errors, when a dangling pointer is dereferenced
in Step 2, can be exploited similarly to spatial errors. A
constraint for exploitable temporal errors is that the memory
area of the deallocated object (the old object) is reused by
another object (new object). The type mismatch between
the old and new object can allow the attacker to access
unintended memory.

Let us consider first reading through a dangling pointer
with the old object’s type but pointing to the new object,
which is controlled by the attacker. When a virtual function
of the old object is called and the virtual function pointer is
looked up, the contents of the new object will be interpreted
as the vtable pointer of the old object. This allows the
corruption of the vtable pointer, comparable to exploiting
a spatial write error, but in this case the dangling pointer
is only dereferenced for a read. An additional aspect of
this attack is that the new object may contain sensitive
information that can be leaked when read through the
dangling pointer of the old object’s type.

Outline

Other memory corruption errors

Out-by-one, overflow, pointer arithmetic

Type confusion errors

Memory corruption countermeasures

Tamper detection

Memory mode protection

Diversification

Defensive programming

Summary

Defensive programming: bounds checking

Defensive programming to avoid overflow requires
bounds checking.

▶ Check data lengths before writing
▶ Check array subscripts are within limits
▶ Check boundary conditions to avoid OBO
▶ Constrain size of inputs
▶ Beware of dangerous API calls to risky code

This is a shared responsibility: we may trust the
tool-chain or each part of the runtime to implement
checks or ensure they are not needed.

Responsibility for bounds checking

Checks or guarantees could be given by the:

▶ programmer
▶ programming language, compiler
▶ OS
▶ hardware

(we’ll examine programmer checks next, others later).

Exercise. For each role, give an example of what could
be done to check bounds and what might go wrong if a
check isn’t done.

Bounds checks by programmer

int a[20], i;
for (i=0, i<20; i++) {

a[i] = 0;
...

}

Question. How can this go wrong?

Bounds checks by programmer

int a[20], i;
for (i=0, i<20; i++) {

if (i<0) signal error;
if (i >= 20) signal error;
a[i] = 0;
...

}

▶ Checking every time seems inefficient
▶ Are both checks required?
▶ Tempting to skip. . .

Bounds checks by programmer

int a[20], i, max;
...

for (i=0, i<max; i++) {
if (i<0) signal error;
if (i >= 20) signal error;
a[i] = 0;
...

}

▶ If bound is computed, both checks essential
▶ But code reviews, programmer reasoning are

brittle. . .
▶ and languages have varying conventions
▶ Arrays start at 1 in Fortran, MATLAB, R, XQuery, . . .

Automated code review and testing

Many code checking tools have been developed to try
to automate security checking.

Split into static and dynamic approaches.

For memory faults, two common dynamic tools are

Valgrind: maintains a shadown memory space to track
previously used locations, can find use-after-free
vulnerabilities. Dynamic translation, 10x slowdown in
use.

AddressSanitizer instruments code at compile time (<
2x slowdown).

http://valgrind.org
https://github.com/google/sanitizers

Outline

Other memory corruption errors

Out-by-one, overflow, pointer arithmetic

Type confusion errors

Memory corruption countermeasures

Tamper detection

Memory mode protection

Diversification

Defensive programming

Summary

Memory corruption attacks and defences
We’ve seen memory corruption attacks on the heap, on
the stack and elsewhere.

Vulnerabilities in code are caused by:

▶ unchecked buffer boundaries
▶ pointer arithmetic errors, out-by-one errors
▶ value overflow, type confusion
▶ format string vulnerabilities

Countermeasures are generic defences or secure
programming:

▶ Detect and abort: canaries
▶ Diversification: address randomisation (ASLR)
▶ Execution prevention (NX/DEP), Control Flow

Integrity
▶ Programming: bounds checking, library functions,

testing

Question. Why aren’t generic defences enough?

Why aren’t generic defences enough?

A wide variety of defences have been proposed and
implemented.

Three main reasons that generic solutions are not always
used/useful:

1. Performance

2. Compatibility

3. Completness/robustness

Nonetheless, generic defences are still being improved
and more widely deployed in practice.

Review questions

Memory corruption vulnerabilities

▶ Explain type confusion errors, giving an example.

Protection mechanisms

▶ Explain how StackGuard canaries prevent overflows.
What attacks are they not effective against?

▶ How does hardware-assisted memory protection
work and when may it be difficult to use?

▶ Explain the strategy of program diversification and
how it is achieved in ASLR.

Avoiding overflow vulnerabilities

▶ Describe where bounds checking should be used to
ensure “defence-in-depth”.

References and credits

▶ Some of the examples were adapted from The Art of
Software Security Assessment.
▶ The paper Eternal War in Memory surveys 30 years

of memory corruption bug examples and their
countermeasures.
▶ The miner and canary image is a public domain

picture available from the Wikipedia page on
domestic canaries.

http://www.amazon.co.uk/Art-Software-Security-Assessment-Vulnerabilities/dp/0321444426
http://www.amazon.co.uk/Art-Software-Security-Assessment-Vulnerabilities/dp/0321444426
https://ieeexplore.ieee.org/abstract/document/6547101
https://en.wikipedia.org/wiki/Domestic_canary
https://en.wikipedia.org/wiki/Domestic_canary

	Other memory corruption errors
	Out-by-one, overflow, pointer arithmetic
	Type confusion errors

	Memory corruption countermeasures
	Tamper detection
	Memory mode protection
	Diversification
	Defensive programming

	Summary

