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Recap

We have looked at:

▶ examples of vulnerabilities and exploits
▶ particular programming failure patterns
▶ software based mitigations

In this lecture we consider a new vulnerability category
and also a new defence strategy

▶ language-based security principles

for (ensuring) secure programs.

We introduce security vulnerabilities that can arise in
concurrent systems, due to multi-processes or
multi-threading.
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Race conditions with check before use

res = access("/tmp/userfile", R_OK);
if (res!=0)

die("access");

/* ok, we can read from /tmp/userfile */
fd = open("/tmp/userfile", O_RDONLY);



API docs (GNU C library: man access)

int access(const char *pathname, int mode)

DESCRIPTION
access() checks whether the calling process can access the file
pathname. If pathname is a symbolic link, it is dereferenced.

The mode specifies the accessibility check(s) to be performed, and
is either the value F_OK, or a mask consisting of the bitwise OR
of one or more of R_OK, W_OK, and X_OK. [...]

The check is done using the calling process's real UID and GID,
rather than the effective IDs as is done when actually attempting
an operation (e.g., open(2)) on the file. [...]

RETURN VALUE
On success (all requested permissions granted, or mode is F_OK
and the file exists), zero is returned. On error (at least one
bit in mode asked for a permission that is denied, or mode is
F_OK and the file does not exist, or some other error occurred),
-1 is returned [...]



Race conditions with check before use

res = access("/tmp/userfile", R_OK);
if (res!=0)

die("access");

/* ok, we can read from /tmp/userfile */
fd = open("/tmp/userfile", O_RDONLY);

▶ access() is designed for setuid programs
▶ privilege check on real user id (user running prog)
▶ open() returns a file descriptor
▶ f.d. is data type that refers to specific file



Time of Check to Time of Use (TOCTOU)



How can this be exploited?

▶ Unix runs multiple processes at once
▶ Attacker runs a process alongside suid program
▶ Must attack at exactly right moment

▶ Processes are scheduled by the OS
▶ maybe on multiple CPUs

▶ Attacker may be able to influence scheduling
▶ slow down system, send job control signals

▶ Attacker may be able to automatically schedule
attack
▶ e.g. Linux inotify API for monitoring file system



General problem: repeatedly looking up
pathnames

Kernel resolves pathnames to inodes using file system.

Looking up file status twice repeats this:
stat("/tmp/bob", &sb);
...
stat("/tmp/bob", &sb);

If /tmp/bob (or /tmp/) change between the two calls,
different files are examined by the two calls!



Fix: using file descriptors instead

File descriptors contain the resolved inode.
fd=open("/tmp/bob", O_RDWR);
fstat(fd, &sb);
...
fstat(fd, &sb);

This always examines the same (actual) file on disk
twice, whatever /tmp/bob points to by the second call.

Even if the file has been deleted from the filesystem the
inode is not deallocated until the reference count
becomes zero.



Risky patterns: using same filename twice

1. A status check like
▶ stat()
▶ lstat()
▶ access()

2. An access to the file like
▶ open(), fopen(),
▶ chmod(), chgrp(), chown(),
▶ unlink(), rename(),
▶ link(), symlink()

Better to use the file descriptor based calls instead:

▶ fstat(), fchmod(), and fchown()

Windows APIs a bit better here (but still tricky areas like
the following).



Permission Races

FILE *fp;
int fd;

if (!(fp=fopen(myfile, "w+")))
die("fopen");

/* we'll use fchmod() to prevent a race condition */
fd=fileno(fp);
/* let's modify the permissions */
if (fchmod(fd, 0600)==-1)

die("fchmod");

▶ fopen() creates a file with default perms 0666
(-rw-rw-rw)!

Exercise. (Recall labs): review the codes for file
permissions and masks on Linux.



Ownership races

drop_privs();

if ((fd=open(myfile, O_RDWR | O_CREAT | O_EXCL, 0600))<0)
die("open");

regain_privs();

/* take ownership of the file */
if (fchown(fd, geteuid(), getegid())==-1)

die("fchown");

A broken attempt in a setuid program: creates a file as
calling user, then sets ownership as root. Unprivileged
users may get file descriptor between steps.

Note: O_EXCL suggests “exclusivity” but really means file should not
already exist, it has no effect on ability to access the file!



Directory position race

GNU file utils had a race vulnerability in recursive
deletion. Example strace for rm -fr /tmp/a removing
/tmp/a/b/c tree:

chdir("/tmp/a")
chdir("b")
chdir("c")
chdir("..")
rmdir("c")
chdir("..")
rmdir("b")
fchdir(3)
rmdir("/tmp/a")

Question. Can you see an attack here?

▶ let rm work until it gets into /tmp/a/b/c
▶ move c directory to /tmp/c
▶ then two chdir("..")s navigate to /
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Races with temporary files
char temp[1024];
int fd;
strcpy(temp, "/tmp/tmpXXXX");
if (!mktemp(temp))

die("mktemp");
fd=open(temp, O_CREAT | O_RDWR, 0700);
if (fd<0)
{

perror("open");
exit(1);

}

Question. Can you see two security issues here?

▶ mktemp() replaces XXXX with random data
▶ unique so not completely unpredictable
▶ moreover, has race condition
▶ (although better than old foobar.PID scheme)

Recommended replacement: fd = mkstemp(temp).
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Risky Banking

public class BankAccount {

private int balance;

public BankAccount(int initialBalance) {
if (initialBalance < 0)

throw new
IllegalArgumentException("initial balance must be >= 0");

balance = initialBalance;
}
}



Risky Banking

public class BankAccount {

public void adjustBalance(int adjustment) {
balance = balance + adjustment;

}
}

Q: What’s wrong with this code?



Risky Banking

public class BankAccount {

public void adjustBalance(int adjustment) {
balance = balance + adjustment;

}
}

A: it goes wrong in a multi-threaded context.



Under the bonnet: Java bytecode

[dice]da: javac BankAccount.java
[dice]da: javap -c BankAccount
Compiled from "BankAccount.java"
public BankAccount1(int);
Code:

0: aload_0 // push address of this object
1: invokespecial #1 // Method java/lang/Object."<init>":()V
4: iload_1 // push first argument integer
5: ifge 18
8: new #2 // class java/lang/IllegalArgumentException
11: dup
12: ldc #3 // String initial balance must be >= 0
14: invokespecial #4 // Method java/lang/IllegalArgumentException."<init>":(Ljava/lang/String;)V
17: athrow
18: aload_0 // push address of this object
19: iload_1 // push first argument integer
20: putfield #5 // store in field balance
23: return



public void adjustBalance(int);
Code:

0: aload_0 // push address of this object
1: aload_0 // and again
2: getfield #5 // fetch field balance
5: iload_1 // first argument: adjustment
6: iadd // top of stack = this.balance + adjustment
7: putfield #5 // store in field balance
10: return

Observe that:
balance = balance + adjustment

is implemented in these steps:
temp = balance
temp = temp + adjustment
balance = temp

where temp is a location in the (thread local) stack.



Racy interleaving: missed update 1

Thread 1 Thread 2
======== ========

temp1 = balance
temp2 = balance

temp1 = temp1+adj1
temp2 = temp2+adj2

balance = temp1
balance = temp2

▶ Final balance loses the adjustment adj1.



Racy interleaving: missed update 2

Thread 1 Thread 2
======== ========

temp1 = balance
temp2 = balance

temp1 = temp1+adj1
temp2 = temp2+adj2

balance = temp2
balance = temp1

▶ Final balance loses the adjustment adj2.



Data races defined

Data Race

A data race occurs when two or more threads access a
shared variable:
1. (potentially) at the same time, and
2. at least one of the accesses is a write

A data race is a race condition at the level of atomic
memory accesses. It is the root cause of many subtle
programming errors involving multi-threaded programs.



Bugs from data races

Data races are usually accidental bugs.

▶ Lead to non-determinism
▶ Buggy behaviour may be very rare
▶ Hence difficult to reproduce: a “heisenbug”

Occasionally data races are intentional and safe:

▶ E.g., write-write races which write the same value
▶ Used knowingly e.g., in lock-free algorithms

This kind of thing is usually just for expert library code or
OS kernel developers.

Normal application developers should aim to write data
race free programs.



Why can data races lead to security flaws?

Just as with race conditions:

▶ attacker may be able to influence thread scheduling
▶ or execute many, many times
▶ . . . to cause an erroneous calculation/inconsistent

value

Additionally, racy programs may have a strange issue:

▶ circular causality loops: undefined behaviour
▶ which allows registers to have any values..
▶ prevented by making no out-of-thin-air

requirement



Java Memory Model: No Out-of-Thin-Air

Requirement: A program should not be able to read
values that couldn’t be written by that program.

Thread 1 Thread 2
---------------------------
r1 := x r2 := y
y := r1 x := r2
print r1 print r2

▶ x, y are shared memory locations, initially both 0
▶ r1 and r2 are thread-local memory locations

The only possible result should be printing two zeros
because no other value appears in or can be created by
the program.

However, certain compiler/CPU optimisations would
allow any value to be output here! (Q. Why is that bad?)



Write speculation breaks no out-of-thin-air

Thread 1 Thread 2
---------------------------
r1 := x r2 := y
y := r1 x := r2
print r1 print r2

using write speculation this can be executed as
Thread 1 Thread 2
---------------------------
y := 42
r1 := x r2 := y
if (r1 != 42) x := r2

y := r1
print r1 print r2

Now the example program could output 42!

Exercise. Give an interleaved execution showing this.
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Hardware security

2018: Meltdown and Spectre announced.

CPU architecture bugs affecting most current CPUs.

▶ Combine a race condition with side-channel attack
▶ result: process A steals data from process B
▶ attacks are generally undetectable

▶ Complex CPUs use microcode to implement ISAs
▶ bugs/vulns also possible in microcode
▶ but workarounds/repairs possible

Emerging areas: hardware security cost-risk trade-off
assessments for security mitigations.
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Ensuring atomicity

In general, race conditions are prevented by ensuring
that compound operations occur atomically.

▶ Examples previously with APIs for file systems
▶ If we are getting a value (file, variable, etc):
▶ broken: test, then get (TOCTOU)
▶ fix: combined API function test-and-get

Question. How can we write API functions that ensure
atomicity?

▶ usually: enforce mutual exclusion
▶ or: use a transaction mechanism (has rollback)

Databases and file systems allow high throughput
concurrency with transactions. Transactional memory
has been an active research topic for a while (for both
software and hardware).
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Using locks

For multi-threaded application programs, e.g., in Java

▶ use locks to ensure mutual exclusion for shared
resources

Sometimes programmers are forgetful about doing this

▶ paths through code possible without locking
▶ use complicated, implicit conventions
▶ e.g., lock objects stored/removed in memory

It’s better to be carefully explicit about locking
conventions.



Safer online banking

Returning to the banking example:
protected final Object lock = new Object();

@GuardedBy("lock")
private int balance;

▶ Whenever we access balance, lock should be held
▶ GuardedBy annotation is a hint from the developer
▶ readable by other developers
▶ but also by a tool, so it can be checked

▶ Several fields might be protected by the same lock



We can split the API into internal and external methods:
protected int readBalance() {

return balance;
}

protected void adjustBalance(int adjustment) {
balance = balance + adjustment;

}

public void credit(int amount) {
if (amount < 0)
throw new IllegalArgumentException("credit amount must be >= 0");

synchronized (lock) {
adjustBalance(amount);

}
}

But we need to be careful that the locking strategy is
followed in all subclasess.

For more, see Contemplate’s technical briefing

http://www.contemplateltd.com/threadsafe/using-threadsafe/testing-just-isnt-good-enough-anymore
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Dynamic analysis

Dynamic analysis is in principle very expensive: monitor
every access to every memory location, and see
whether the access might have raced with a previous
access from a different thread.

The Lockset algorithm simplifies this using the
heuristic/expectation that every shared variable is
protected by at least one lock.

▶ For each location x, initialise C(x) be all locks
▶ For each thread t, let locks(t) be locks held by t
▶ On each access to x from thread t
▶ refine C(x) by removing locks not in locks(t)
▶ if C(x)={} then give a warning

The Eraser tool operates a tuned version of this
algorithm that distinguishes the kinds of access.



Eraser state model for shared locations

▶ Calculate locksets for Shared and Shared-Modified
▶ Only report errors in the Shared-Modified state

Eraser implemented this using binary modification to
instrument a program dynamically.



Static analysis for race detection

Can use a static version of the Lockset algorithm.
Advantages:

▶ Spot data races that are missed by dynamic tool
▶ dynamic: may not explore paths “near enough”

▶ Doesn’t impact code execution speed
▶ dynamic: instrumentation gives significant

slow-down

Disadvantages:

▶ Difficult to track locks held in data structures, etc.

The analysis can be made precise if programmers use
GuardedBy annotations to describe the locking policy.
Otherwise a tool has to guess the relevant locks and use
heuristics to report discrepancies.



Contemplate’s ThreadSafe tool
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Review Questions

Race Conditions

▶ Using an example based on Unix file handling,
describe what a race condition is, and explain how
an attacker can exploit it.

Data races

▶ Describe the two necessary conditions for a program
to contain a data race.
▶ Discuss whether it is possible for a racy program to

compute a completely arbitrary value.

Program securely

▶ Describe two programming techniques that can be
used to avoid security issues with race conditions.
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