
Secure Programming Lecture 14:
Static Analysis II

David Aspinall

Informatics @ Edinburgh



Outline

Overview

Program understanding

Program verification and property checking

Bug finding

Summary



Recap

We’re looking at

▶ principles and tools

for ensuring software security.

This lecture looks at:

▶ further example uses of static analysis

▶ some hints about how static analysis works



Advanced static analysis jobs

Static analysis is used for a range of tasks that are
useful for ensuring secure code.

Basic tasks include type checking and style checking,
described last lecture.

More advanced tasks are:

▶ Program understanding: inferring meaning
▶ Property checking: ensuring no bad behaviour
▶ Program verification: ensuring correct behaviour
▶ Bug finding: detecting likely errors



Outline

Overview

Program understanding

Program verification and property checking

Bug finding

Summary



Program understanding tools

Help developers understand and manipulate large
codebases.

▶ Navigation swiftly inside the code
▶ finding definition of a constant
▶ finding call graph for a method

▶ Support refactoring operations
▶ re-naming functions or constants
▶ move functions from one module to another
▶ needs internal model of whole code base

▶ Inferring design from code
▶ Reverse engineer or check informal design

Outlook: may become increasingly used for security
review, with dedicated tools. Close relation to tools used
for malware analysis (reverse engineering) such as IDA
Pro and Ghidra.

https://hex-rays.com/IDA-pro/
https://hex-rays.com/IDA-pro/
https://ghidra-sre.org/


Commercial example: Structure101



Research example: Fujaba and Reclipse (2011)



How Reclipse works

See Fujaba project archive at University of Paderborn

https://web.cs.upb.de/archive/fujaba/


Model-based testing

If we have a precise (formal) model of the system we
can check it satisfies security properties.

▶ Test or staticallly check properties of models
▶ Models may be from design or extracted from code

Example tools include: Alloy.

General purpose tools like theorem provers or SMT
solvers may be used as well.

https://alloytools.org/


Outline

Overview

Program understanding

Program verification and property checking

Bug finding

Summary



Program verification

The “gold standard”, best guarantee for correctness.

▶ Uses formal methods
▶ theorem proving
▶ model checking

▶ Drawback: needs precise formal specification
▶ Drawback: expensive to industry
▶ time consuming, needs experts (logic/maths)
▶ . . . but investment up front may pay off

▶ Currently mainly used in safety critical domains
▶ e.g., railway, nuclear, aeronautics
▶ emerging: automobile, security

Example tools include: nuXmv and SPARK.

General purpose Interactive Theorem Provers such
as Coq and Isabelle/HOL are also used to verify code.

See our course Formal Verification for more.

https://nuxmv.fbk.eu/
http://www.adacore.com/sparkpro/
https://coq.inria.fr/
https://isabelle.in.tum.de/
https://opencourse.inf.ed.ac.uk/fv


Property checking

AKA Lightweight formal methods

▶ Make specifications be standard and generic
▶ this program cannot raise NullPointerException
▶ all database connections are closed after use

Static checking

▶ Prevent many violations of specification, not all
▶ Preconditions (requires) & postconditions

(ensures)
▶ May produce counterexamples to explain violations

Examples (using a range of underlying techniques):
Code Contracts, Splint, JML, Grammatech CodeSonar,
PolySpace, ThreadSafe, Facebook Infer.

https://github.com/Microsoft/CodeContracts
http://www.splint.org/
http://www.eecs.ucf.edu/~leavens/JML/index.shtml
http://www.grammatech.com/codesonar
http://www.mathworks.co.uk/products/polyspace/
http://www.contemplateltd.com/threadsafe
http://fbinfer.com/


Null References: A Billion Dollar Mistake?

Tony Hoare introduced Null references in ALGOL W back
in 1965 “simply because it was so easy to implement”.

He later called it “my billion-dollar mistake”.

. . . but called the C gets function a multi-billion dollar
mistake!

See his 2009 talk.

https://www.infoq.com/presentations/Null-References-The-Billion-Dollar-Mistake-Tony-Hoare/


Assertion checking

Many languages have support for assertions.

These are dynamic (runtime) checks that can be used to
test properties the programmer expects to be true.

assert(exp)

▶ fails if exp evaluates to false
▶ assertion tests usually disabled
▶ treated as comments
▶ may be enabled for testing during development
▶ or when running unit tests

Question. What could happen if tests are run only with
assertions enabled?



Assertions in Java

private static int addHeights(int ah, int bh) {
assert ah > 0 && bh > 0 : "parameters should be positive";
return ah+bh;

}

Notice above method is private.

▶ API (public) functions should always test constraints
▶ throw exceptions if not met
▶ eliminate clients (potential attackers) who break API

contract
▶ Internal functions may rely on local properties
▶ if maintained in same class, easier to check/ensure



Assertions for security

We could use assertions as safety checks for functions
that are at risk of being used in a buggy way.

assert(alloc_size(dest) > strlen(src));
strcpy(dest, src);

alloc_size() is not a standard C function, but GCC, for example, has
support for trying to track the size of allocated functions with
function attributes

http://gcc.gnu.org/onlinedocs/gcc/Function-Attributes.html


From dynamic to static

With static analysis, we may be able to automatically
determine whether assertions (if enabled) will:

1. always succeed
2. may sometimes fail (unknown)
3. will always fail

Easy cases:

1. assert(true);
2. x=readint(); assert(x>0);
3. assert(false);

The perfect case would be showing that assertions in a
program can only succeed: thus they do not need to be
checked dynamically.

Question. what troubles can you see with case 2?



Programming with contracts

Using assertions used in a static or dynamic way can be
used to increase confidence in programs being correct.

Some static analysis tools use assertions (entirely)
internally; others allow an interface using annotations.

So called contract-based programming uses explicit
pre- and post- conditions supplied by the programmer
when developing code.



Design by contract

Design by Contract (TM) aims to build a system as a
set of components whose interaction is governed by
mutual obligations, or contracts.

The idea was promoted by Bertrand Meyer in his design
of the Eiffel OOP language (1986).

It adapts and extends ideas from Hoare Logic used for
program verification, in particular, the use of
pre-conditions and post-conditions.

Traditionally a Hoare triple is written like this:

{P}C{Q}

where C is a program command, P is a pre-condition and
Q is a post-condition.



Example contract for insertion into dictionary

Obligations Benefits

Client Table isn’t full, key
is non-empty string

Get updated
table with
element added
for given key

Supplier Record given
element in table
associated with
given key

No need to check
for full table or
empty key

Question. What are the preconditions and
postconditions for the code here?



Specification in Eiffel

put (x: ELEMENT; key: STRING) is
-- Insert x so that it will be retrievable through key.

require
count <= capacity
not key.empty

do
... Some insertion algorithm ...

ensure
has (x)
item (key) = x
count = old count + 1

end

As well as pre and post conditions, other contract
features include class invariants which must be
established when an object is created and maintained
whenever it is modified.



Relationship to defensive programming

“Defensive programming” adds checks to code to ensure
that pre-conditions are met (coding assertions explicitly).

put (x: ELEMENT; key: STRING) is
do
if key.empty then

error "Empty key supplied"
...
end

With contracts these checks are not added: they are
replaced by contract checking.

Contract checking may use static verification, or
dynamic checking (or some combination).

Besides products sold by Eiffel Software, there is an open source free
Eiffel tool chain developed by the Gobo Eiffel Project.

http://www.gobosoft.com/eiffel/gobo/


Contracts in Java

The Java Modeling Language allows specifications in
the same way as Design by Contract.

/* requires 0 < n;
assignable elems;
ensures elems.length == n;

*/
publicBoundedStack(int n) {

elems =newObject[n];
}

The OpenJML project implements a contract checking
tool for JML.

Exercise. Try to understand the examples on the
OpenJML home page. The *loop invariants* are complex
but overall requires and ensures should be
comprehensible.

https://www.openjml.org/


Splint: Secure Programming Lint

Allows annotations to be added by programmer,
specifically for a static analysis tool to check.
void *strcpy(char *s1, char *s2)

/*modifies *s1 */
/*requires maxSet(s1) >= maxRead(s2) */
/*ensures maxRead(s1) == maxRead (s2) */;

▶ maxSet(x): greatest offset (index) that may be
written to in x
▶ maxRead(y): greatest that may be read from in y

Splint was introduced in 2001, it has a Github repo but isn’t in active
development by original academic authors.

https://github.com/splintchecker/splint


strncat

strncat(dest,src,num): appends the first num
characters of source to destination, plus a termi-
nating null character. If the length of the C string
in src is less than num, only the content up to
the terminating null-character is copied

char *strncat (char *s1, char *s2, size_t n)
/*requires maxSet(s1) >=maxRead(s1) + n*/

void f(char *str){
char buffer[256];
strncat(buffer, str, sizeof(buffer) - 1);
return;

}



Splint warning messages

char *strncat (char *s1, char *s2, size_t n)
/*requires maxSet(s1) >=maxRead(s1) + n*/

void f(char *str){
char buffer[256];
strncat(buffer, str, sizeof(buffer) - 1);
return;

}

strncat.c:4:21: Possible out-of-bounds store:
strncat(buffer, str, sizeof((buffer)) - 1);

Unable to resolve constraint:
requires maxRead (buffer strncat.c:4:29) <= 0

needed to satisfy precondition:
requires maxSet (buffer strncat.c:4:29)

>= maxRead (buffer strncat.c:4:29) + 255
derived from strncat precondition:

requires maxSet (<parameter 1>)
>= maxRead (<parameter1>) + <parameter 3>



Reasoning with assertions

How does a static analyser reason?

Computations about assertions can be chained through
the program, using a program logic inside the tool.

E.g., build up a set of facts known before each
statement:

// { } (nothing known)
x = 1; // { x = 1 }
y = 1; // { x = 1, y = 1 }
assert (x < y); // FAIL



Symbolic evaluation

This can work also with variables, whose value is not
known statically:

// { } (nothing known)
x = z; // { x = z }
y = z+1; // { x = z, y = z+1 }
assert (x < y); // SUCCEED (provided z<MAXINT)



Conditionals and loops

These make static analysis much harder, of course.
// {} (nothing known)

x = v; // {x=v}
if (x < y) //

y = v; // {x=v, x<y}
assert (x < y) // Either: {x=v,y=v}: FAIL

// Or: {x=v,¬(x<y)}: FAIL

For conditionals, we need to either

▶ explore every path
▶ merge information at join-points

For loops, we need to either

▶ unroll for a finite number of iterations
▶ capture variation using logical invariants



Security assertions

Using logical (or other) reasoning techniques, there are
various different types of assertions that are useful for
security checking, for example:

▶ Bounds and range analysis
▶ Tainted data analysis
▶ Type state and Resource tracking

Exercise. What kinds of security issues can these
assertions help with? What kinds of security issues
would need other assertions?



Bound/range Analysis

alloc_size(dest)>strlen(src)

array_size(a)>n before a[n] access

▶ Check integers are in required ranges



Type State (Resource) Tracking

isnull(ptr), nonull(ptr)

isopen_for_read(handle), isclosed(handle)

uninitialized(buffer), terminatedstring(buffer)

▶ Tracks status of data value held by a variable
▶ Helps enforce API usage contracts to avoid errors
▶ e.g., DoS

▶ Usage/lifecycle may be expressed with automaton



Example: avoiding double-free errors



Extensible Type Systems

One approach to implementing type-state like systems is
to use an extensible type system.

This allows “plugins” for type-based analysis.

An example is the Checker Framework for Java.

https://checkerframework.org/


Example: Nullness Checkers in Java

@NonNull Object @Nullable Date

@Nullable Object

@NonNull Date

The type annotation Nullable is a type whose values
may be null, whereas NonNull can never be null. This
interacts with the class type hierarchy as above.

Exercise. Describe how these types help infer precise
information and give errors. For example, inside a check
‘if (date != null) ... ‘ we know the type of ‘date‘ is
‘NonNull Date‘. APIs can use type annotations. Design
other checkers for restricted integers, strings, etc.

Uber’s recent NullAway tool is an example implementation of this
analysis. See Nullness checker and NullAway on Github which is

advertised as “giving great bank for your buck.”

https://checkerframework.org/manual/#nullness-checker
https://github.com/uber/NullAway


Null Pointers in CodeSonar

Not all null pointer analyses are equal! Some compilers spot only
"obvious" null pointer risks, other tools perform deeper analysis like
CodeSonar and NullAway.



Code Contracts in .NET

Unfortunately Code contracts aren’t supported in more recent
versions of .NET, it isn’t clear why. Microsoft’s documentation

suggests using Nullable reference types instead.

https://learn.microsoft.com/en-us/dotnet/framework/debug-trace-profile/code-contracts


Outline

Overview

Program understanding

Program verification and property checking

Bug finding

Summary



Bug finding

Bug finding tools look for suspicious patterns in code.
Traditionally they may be unsound (flag potential bugs
that may not actually be bugs).

FindBugs is an example:

▶ Finds possible Java bugs according to rules
▶ rules are suspicious patterns in code
▶ designed by experience of buggy programs
▶ . . . collected from real world and student(!) code

▶ Warnings are categorized by
▶ severity: how serious in general the problem is
▶ confidence: tool’s belief of true problem

FindBugs is no longer maintained, and is now replaced by SpotBugs.

http://findbugs.sourceforge.net/
https://spotbugs.github.io/


Example bugs

Common accidents

An error found in Sun’s JDK 1.6:

public String foundType() {
return this.foundType();

}

Misunderstood APIs

public String makeUserid(String s) {
s.toLowerCase();
return s;

}



Anti-idiom: double-checked locking in Java

if (this.fitz == null) {
synchronized (mylock) {

if (this.fitz == null) {
this.fitz = new Fitzer();

}
}

}

[dice]da: findbugs Fitz.class
M M DC: Possible doublecheck on Fizz.fitz in Fitz.getFitz()

At Fitz.java:[lines 1-3]



FindBugs GUI



Clang Static Analyser

An open source tool for C, C++, Objective-C included in
XCode.



Clang Static Analyser HTML reports



Outline

Overview

Program understanding

Program verification and property checking

Bug finding

Summary



Take away points

Program analysis tools can help find security flaws.

▶ static: examine millions of lines, repeatedly
▶ dynamic: equip code with self-checking

Some tools are for general bugs, built into IDEs. Others
are specific to security, may include:

▶ risk analysis, including impact/likelihood
▶ issue/requirements tracking, metrics

These are becoming more mainstream

▶ frequency of security errors unmanageable
▶ ⇝ deeper, wider automatic code analysis and repair
▶ integration into source code platforms like GitHub

Tools use program analysis to track properties of data
being computed on, sometimes aided by annotations.



References and credits

Some of this lecture is based Chapters 2-4 of

▶ Secure Programming With Static Analysis by Brian
Chess and Jacob West, Addison-Wesley 2007.

Recommended reading:

▶ Al Bessey et al. A few billion lines of code later:
using static analysis to find bugs in the real world,
CACM 53(2), 2010.

https://www.pearson.com/us/higher-education/program/Chess-Secure-Programming-with-Static-Analysis/PGM325117.html
http://dl.acm.org/citation.cfm?id=1646374
http://dl.acm.org/citation.cfm?id=1646374

	Overview
	Program understanding
	Program verification and property checking
	Bug finding
	Summary

