
Secure Programming Lecture 15:
Information Leakage

David Aspinall

Informatics @ Edinburgh



Outline

Overview

Language Based Security

Taint tracking

Information flow security by type-checking

Summary



Recap

We have looked at:

▶ examples of vulnerabilities and exploits
▶ particular programming failure patterns
▶ security engineering
▶ tools: static analysis for code review

In this lecture we examine some:

▶ language-based security principles

for (ensuring) secure programs.



Outline

Overview

Language Based Security

Taint tracking

Information flow security by type-checking

Summary



Security Properties

Remember the “CIA triple” of traditional properties for
secure systems:

▶ Confidentiality
▶ Integrity
▶ Availability

(these are not the only security-relevant properties)

Confidentiality can be particularly tricky compared to I
and A, to establish. (Q. Why?)

Confidentiality

Information is confidential if it cannot be learned by
unauthorised principals.



Information leakage through the web



Single origin restriction

▶ Browser: Single Origin Policy (SOP): web page
elements must come from same domain, or else
block/warn user
▶ Too restrictive in practice: no mashups
▶ Doesn’t prevent intentional/accidental release



Generalised origin-based restrictions

▶ Web page loads script content from many places
▶ Information from user/browser may leak
▶ Motivates refinement of SOP in modern browsers

(2014-) to allow new control policies:
▶ CSP: Content Security Policy (browser-side)
▶ CORS: Cross-origin Resource Sharing (server-side)

▶ This gives a form of Discretionary Access Control

Question. Sometimes DAC is not good enough, why?

https://developer.mozilla.org/en-US/docs/Web/HTTP/CSP
https://developer.mozilla.org/en-US/docs/Web/HTTP/CORS


A different solution: separate confidential from
non-confidential data

A programming approach might ensure confidentiality or integrity, by
making sure that scripts do not mix data from different domains.



Language-based security approach

Idea: prevent application-level attacks inside the
application.

Benefits:

▶ Defence at application level where meaningful
app-level notions of user, APIs, services, etc are
defined and connected to lower-level.

▶ Semantics-based security specification possible:
rigorous and precise definition of what is required,
based on definitions and data used inside program.

▶ Static enforcement sometimes possible if we
admit a white box technique, we can examine the
code, use programmer annotations and/or special
type systems, drive run-time monitoring if needed.



Outline

Overview

Language Based Security

Taint tracking

Information flow security by type-checking

Summary



Dynamic taint tracking

Idea: add security labels to data inputs (sources) and
data outputs (sinks). Propagate labels during
computation (cf dynamic typing).

Labels are:

Tainted

▶ Data from taint sources (e.g., user input)
▶ Data arising from or influenced by tainted data

Untainted

▶ Data that is safe to output or use in sensitive ways



Stopping tainted data being stored



Preventing jumps to tainted addresses

See Schwartz, Avgerinos, Brumley, All You Ever Wanted to Know
About Dynamic Taint Analysis and Forward Symbolic Execution (but
might have been afraid to ask), IEEE Security and Privacy, 2010. This

paper explains tainting with a simple operational semantics.

http://users.ece.cmu.edu/~ejschwar/papers/oakland10.pdf
http://users.ece.cmu.edu/~ejschwar/papers/oakland10.pdf
http://users.ece.cmu.edu/~ejschwar/papers/oakland10.pdf


Taintdroid: notifying dynamic leaks on Android

Taintdroid uses a modification of the Android framework to track data
flows at runtime. See the demo video.

https://www.youtube.com/watch?v=qnLujX1Dw4Y


Drawbacks of the dynamic method

Preventing code injection exploits using dynamic
taint tracking is like letting a thief in your house
and checking his bag for stolen goods at the very
moment he tries to leave. It might work, but only
if you never lose track of the gangster and if you
really know your house. However, I would prefer
a solution that does not let thieves in my house
in the first place.

Analogy by Martin Johns used to explain dynamic taint tracking, 2007

http://www.martinjohns.com/


Another drawback: implicit flows

▶ Simple dynamic tracking only captures direct flows
▶ To spot implicit flows, need to monitor every path
▶ Not only the ones actually taken by the program!
▶ Quickly impractical without severely pruning
▶ special techniques like forward symbolic execution

▶ Partial solution: type checking for information flow
▶ or hybrid dynamic-static methods



Outline

Overview

Language Based Security

Taint tracking

Information flow security by type-checking

Summary



Type checking rules

Recall that type checking rules are implemented by
compilers and static checkers to explain how smaller
pieces of the program and their types are combined to
make larger programs and types.

They are written like logical inference rules.

Expressions:

Commands:



Type-checking information flow

Idea: define a type system which tracks security levels
of variables in the program, and adding levels to sources
and sinks. Security levels may be:

High

▶ Sensitive information, e.g., personal details
▶ Any other data that
▶ is computed directly from high data
▶ occurs in a high context (high test in if)

Low

▶ Public information, e.g, obtained from user input

More generally, security labels may be taken from a multi-level
security lattice. (Security lattices are a basic topic in access control,
you may like to consult a textbook if you haven’t seen them before.)



Static guarantee for security type system

The type system is designed to detect insecure
information flows.

If a program can be type-checked, it will be secure on
any execution, without the need to monitor dynamically.

Compare this with the idea of ordinary typing for data, to distinguish
strings and numbers, etc. That provides the guarantee of memory

safety: a well-typed program does not need to check types
dynamically.

Theorem: Typability implies no insecure flows

If an output expression has type low, then it cannot be
affected by any input of type high. Hence there can be
no insecure information flows in the program.



Absence of flows



Semantic property: non-interference

Goguen and Meseguer expressed the property of
non-interference for sequential programs.

For any two executions of the program which dif-
fer only in high inputs, the result of low outputs
does not change.

More generally, we may use a notion of behavioural equivalence to
relate values computed by the program. This allows for precise

values to change, e.g., generating randomly different crypto keys on
each run, and to express the restricted capability of an attacker to

decrypt values.



Formalisation of non-interference

Non-interference can be formalised using programming
language semantics, as a definition like this:

Semantic indistinguishability



Type-checking information flow: examples



Type-checking: basic rules



Type-checking: compound rules



Type-checking: example



Limits of simple type checking



Inevitable leaks: Declassification

Another limitation is the need to expose information
carefully sometimes.

if (!password.equals(inputString)) {
System.out.println("Password wrong, please try again.");

}

A password check with a retry inevitably leaks 1-bit of
information.

Solution: add special declassification points where the
programmer realises that they must expose some (part
of) confidential data, or output some information in a
high context.



Jif: Information Flow Checking for Java
Jif extends Java by adding labels that express restrictions
on how information may be used. We can give a security
policy to a variable x with:

int {Alice->Bob} x;

which says that information in x is controlled by Alice,
and Alice permits the information to be seen by Bob.

The Jif compiler analyses information flows and checks
whether confidentiality and integrity are ensured.

int {Alice->Bob, Chuck} y;
x = y; // OK: policy on x is stronger
y = x; // BAD: policy on y is not as strong as x

Jif translates into plain Java, doing static type checking,
but also allows dynamic enforcement for runtime labels.

For JavaScript, JSFlow is an approach using a security-enhanced
interpreter with dynamic typing.

http://www.cs.cornell.edu/jif/
https://www.jsflow.net/


FlowDroid: static taint tracking on Android

FlowDroid does static taint tracking for Android
applications.

It includes sophisticated data flow tracking that
understands pointer aliasing, as well as class and field
references.

See FlowDroid web page for more information.

https://blogs.uni-paderborn.de/sse/tools/flowdroid/


Outline

Overview

Language Based Security

Taint tracking

Information flow security by type-checking

Summary



References and credits

Some of this lecture has been adapted from

▶ Information Flow lectures given by Andrei Sabelfeld
at Chalmers University of Technology, Sweden.

Recommended reading:

▶ Sabelfeld and Myers, Language-Based
Information-Flow Security, IEEE Journal on Selected
Areas In Communications, 21(1), 2003.

http://www.cse.chalmers.se/~andrei/
http://www.cse.psu.edu/~tjaeger/cse598-f11/docs/sm-jsac03.pdf
http://www.cse.psu.edu/~tjaeger/cse598-f11/docs/sm-jsac03.pdf

	Overview
	Language Based Security
	Taint tracking
	Information flow security by type-checking
	Summary

