
Secure Programing Labs Cheatsheet

Some useful commands

General linux

make Builds your code
gcc <source-code> C compiler

-o <program> to name the executable, else it will be called a.out
-O 0 disables optimisations, giving simpler code

objdump <program> Lets you view information about a program
-d to disassemble to assembly
-s to disassemble to ASCII format
-j to disassemble named section

strace <program> Runs the program and shows systemcalls as they are made (usefull for debugging
shellcode)

nc <host> <port> The netcat program. Useful for sending and listening to data going between ports.
By default writes.
-l to listen

ip addr See what ip address the virtual machine has

GDB

GDB is the go-to command line debugger. For some primitive GUI support, you can try running it inside
Emacs (M-x gdb) or with a curses UI, gdb --tui.

gdb <program> Runs GDB on your program
-x <gdbinit> lets you run a script when GDB is first loaded

Inside GDB, the following commmands are useful:

file <binary> Start a new debugging section with the target binary.
The current debugging section will be ended.

run [<args>] [< <input>] Run your program with optional args and input
Can use backticks in the args to run an external command (such as ‘perl -e ‘print “A”x9001’‘)

set args [<args>] [< <input>] Specifies the args for the run command automatically
awatch <address> Sticks a read/write watch point whenever the memory at the address is accessed
b <break-point> Set a break point at a memory location (which can be a function name, e.g., b main

or a de-referenced pointer, as b *0x123456)
c Continue
si Step instruction
x/32x $ebp Prints the memory as hexadecimal ints for the 32 bytes at the memory pointed to by the

register $ebp
x/8i $eip Prints the memory as disassembled instructions the 8 bytes at the memory pointed to by the

register $eip

1

p/x $ebp Print the value in the register $ebp
disas Shows the disassembly for wherever the instruction pointer is
list Shows where you are in the source code (if debugging data is on)
<!– set disassembly-flavor intel Gives you Intel-style disassembly –>
help The manual!

Radare

Radare is a really powerful dissembler framework It is worth learning but not required for these labs. Here
are a couple of commands which help in constructing shellcode. More documentations please read the
radare2book from the link below.

https://www.gitbook.com/book/radare/radare2book/details

rasm2 "nop;nop;nop" Gives you the bytecode for three nop instructions
rasm2 -f <file> -a x86.as -C Gives you the bytecode for assembler instructions in <file>, avoid-

ing zeros and printing the result as a C-formatted string
rabin2 -z <binary file> Print all string address in the memory

2

	Some useful commands
	General linux
	GDB
	Radare

