
SEED Labs – Environment Variable and Set-UID Program Lab 1

Environment Variable and Set-UID Program Lab

Copyright © 2006 - 2016 by Wenliang Du.
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International
License. If you remix, transform, or build upon the material, this copyright notice must be left intact, or
reproduced in a way that is reasonable to the medium in which the work is being re-published.

1 Overview

The learning objective of this lab is for students to understand how environment variables affect program
and system behaviors. Environment variables are a set of dynamic named values that can affect the way
running processes will behave on a computer. They are used by most operating systems, since they were
introduced to Unix in 1979. Although environment variables affect program behaviors, how they achieve
that is not well understood by many programmers. As a result, if a program uses environment variables, but
the programmer does not know that they are used, the program may have vulnerabilities.

In this lab, students will understand how environment variables work, how they are propagated from
parent process to child, and how they affect system/program behaviors. We are particularly interested in how
environment variables affect the behavior of Set-UID programs, which are usually privileged programs.
This lab covers the following topics:

• Environment variables
• Set-UID programs
• Securely invoke external programs
• Capability leaking
• Dynamic loader/linker

Readings and videos. Detailed coverage of the Set-UID mechanism, environment variables, and their
related security problems can be found in the following:

• Chapters 1 and 2 of the SEED Book, Computer & Internet Security: A Hands-on Approach, 2nd
Edition, by Wenliang Du. See details at https://www.handsonsecurity.net.

• Section 2 of the SEED Lecture at Udemy, Computer Security: A Hands-on Approach, by Wenliang
Du. See details at https://www.handsonsecurity.net/video.html.

Lab environment. This lab has been tested on the SEED Ubuntu 20.04 VM. You can download a pre-built
image from the SEED website, and run the SEED VM on your own computer. However, most of the SEED
labs can be conducted on the cloud, and you can follow our instruction to create a SEED VM on the cloud.

2 Lab Tasks

Files needed for this lab are included in Labsetup.zip, which can be downloaded from the lab’s website.

https://www.handsonsecurity.net
https://www.handsonsecurity.net/video.html

SEED Labs – Environment Variable and Set-UID Program Lab 2

2.1 Task 1: Manipulating Environment Variables

In this task, we study the commands that can be used to set and unset environment variables. We are using
Bash in the seed account. The default shell that a user uses is set in the /etc/passwd file (the last field
of each entry). You can change this to another shell program using the command chsh (please do not do it
for this lab). Please do the following tasks:

• Use printenv or env command to print out the environment variables. If you are interested in
some particular environment variables, such as PWD, you can use "printenv PWD" or "env |
grep PWD".

• Use export and unset to set or unset environment variables. It should be noted that these two
commands are not separate programs; they are two of the Bash’s internal commands (you will not be
able to find them outside of Bash).

2.2 Task 2: Passing Environment Variables from Parent Process to Child Process

In this task, we study how a child process gets its environment variables from its parent. In Unix, fork()
creates a new process by duplicating the calling process. The new process, referred to as the child, is an
exact duplicate of the calling process, referred to as the parent; however, several things are not inherited by
the child (please see the manual of fork() by typing the following command: man fork). In this task,
we would like to know whether the parent’s environment variables are inherited by the child process or not.

Step 1. Please compile and run the following program, and describe your observation. The program can
be found in the Labsetup folder; it can be compiled using "gcc myprintenv.c", which will generate
a binary called a.out. Let’s run it and save the output into a file using "a.out > file".

Listing 1: myprintenv.c
#include <unistd.h>
#include <stdio.h>
#include <stdlib.h>

extern char **environ;
void printenv()
{

int i = 0;
while (environ[i] != NULL) {

printf("%s\n", environ[i]);
i++;

}
}

void main()
{

pid_t childPid;
switch(childPid = fork()) {

case 0: /* child process */
printenv(); À
exit(0);

default: /* parent process */
//printenv(); Á

SEED Labs – Environment Variable and Set-UID Program Lab 3

exit(0);
}

}

Step 2. Now comment out the printenv() statement in the child process case (Line À), and uncomment
the printenv() statement in the parent process case (Line Á). Compile and run the code again, and
describe your observation. Save the output in another file.

Step 3. Compare the difference of these two files using the diff command. Please draw your conclusion.

2.3 Task 3: Environment Variables and execve()

In this task, we study how environment variables are affected when a new program is executed via execve().
The function execve() calls a system call to load a new command and execute it; this function never re-
turns. No new process is created; instead, the calling process’s text, data, bss, and stack are overwritten by
that of the program loaded. Essentially, execve() runs the new program inside the calling process. We
are interested in what happens to the environment variables; are they automatically inherited by the new
program?

Step 1. Please compile and run the following program, and describe your observation. This program
simply executes a program called /usr/bin/env, which prints out the environment variables of the
current process.

Listing 2: myenv.c
#include <unistd.h>

extern char **environ;
int main()
{

char *argv[2];

argv[0] = "/usr/bin/env";
argv[1] = NULL;
execve("/usr/bin/env", argv, NULL); À

return 0 ;
}

Step 2. Change the invocation of execve() in Line À to the following; describe your observation.

execve("/usr/bin/env", argv, environ);

Step 3. Please draw your conclusion regarding how the new program gets its environment variables.

SEED Labs – Environment Variable and Set-UID Program Lab 4

2.4 Task 4: Environment Variables and system()

In this task, we study how environment variables are affected when a new program is executed via the
system() function. This function is used to execute a command, but unlike execve(), which di-
rectly executes a command, system() actually executes "/bin/sh -c command", i.e., it executes
/bin/sh, and asks the shell to execute the command.

If you look at the implementation of the system() function, you will see that it uses execl() to
execute /bin/sh; execl() calls execve(), passing to it the environment variables array. Therefore,
using system(), the environment variables of the calling process is passed to the new program /bin/sh.
Please compile and run the following program to verify this.

#include <stdio.h>
#include <stdlib.h>

int main()
{

system("/usr/bin/env");
return 0 ;

}

2.5 Task 5: Environment Variable and Set-UID Programs

Set-UID is an important security mechanism in Unix operating systems. When a Set-UID program
runs, it assumes the owner’s privileges. For example, if the program’s owner is root, when anyone runs
this program, the program gains the root’s privileges during its execution. Set-UID allows us to do many
interesting things, but since it escalates the user’s privilege, it is quite risky. Although the behaviors of
Set-UID programs are decided by their program logic, not by users, users can indeed affect the behav-
iors via environment variables. To understand how Set-UID programs are affected, let us first figure out
whether environment variables are inherited by the Set-UID program’s process from the user’s process.

Step 1. Write the following program that can print out all the environment variables in the current process.

#include <stdio.h>
#include <stdlib.h>

extern char **environ;
int main()
{

int i = 0;
while (environ[i] != NULL) {

printf("%s\n", environ[i]);
i++;

}
}

Step 2. Compile the above program, change its ownership to root, and make it a Set-UID program.

// Asssume the program’s name is foo
$ sudo chown root foo
$ sudo chmod 4755 foo

SEED Labs – Environment Variable and Set-UID Program Lab 5

Step 3. In your shell (you need to be in a normal user account, not the root account), use the export
command to set the following environment variables (they may have already exist):

• PATH
• LD LIBRARY PATH
• ANY NAME (this is an environment variable defined by you, so pick whatever name you want).

These environment variables are set in the user’s shell process. Now, run the Set-UID program from
Step 2 in your shell. After you type the name of the program in your shell, the shell forks a child process,
and uses the child process to run the program. Please check whether all the environment variables you set
in the shell process (parent) get into the Set-UID child process. Describe your observation. If there are
surprises to you, describe them.

2.6 Task 6: The PATH Environment Variable and Set-UID Programs

Because of the shell program invoked, calling system() within a Set-UID program is quite dangerous.
This is because the actual behavior of the shell program can be affected by environment variables, such as
PATH; these environment variables are provided by the user, who may be malicious. By changing these
variables, malicious users can control the behavior of the Set-UID program. In Bash, you can change
the PATH environment variable in the following way (this example adds the directory /home/seed to the
beginning of the PATH environment variable):

$ export PATH=/home/seed:$PATH

The Set-UID program below is supposed to execute the /bin/ls command; however, the program-
mer only uses the relative path for the ls command, rather than the absolute path:

int main()
{

system("ls");
return 0;

}

Please compile the above program, change its owner to root, and make it a Set-UID program. Can
you get this Set-UID program to run your own malicious code, instead of /bin/ls? If you can, is your
malicious code running with the root privilege? Describe and explain your observations.

Note: The system(cmd) function executes the /bin/sh program first, and then asks this shell pro-
gram to run the cmd command. In Ubuntu 20.04 (and several versions before), /bin/sh is actually a
symbolic link pointing to /bin/dash. This shell program has a countermeasure that prevents itself from
being executed in a Set-UID process. Basically, if dash detects that it is executed in a Set-UID process,
it immediately changes the effective user ID to the process’s real user ID, essentially dropping the privilege.

Since our victim program is a Set-UID program, the countermeasure in /bin/dash can prevent our
attack. To see how our attack works without such a countermeasure, we will link /bin/sh to another shell
that does not have such a countermeasure. We have installed a shell program called zsh in our Ubuntu
20.04 VM. We use the following commands to link /bin/sh to /bin/zsh:

$ sudo ln -sf /bin/zsh /bin/sh

SEED Labs – Environment Variable and Set-UID Program Lab 6

2.7 Task 7: The LD PRELOAD Environment Variable and Set-UID Programs

In this task, we study how Set-UID programs deal with some of the environment variables. Several en-
vironment variables, including LD PRELOAD, LD LIBRARY PATH, and other LD * influence the behavior
of dynamic loader/linker. A dynamic loader/linker is the part of an operating system (OS) that loads (from
persistent storage to RAM) and links the shared libraries needed by an executable at run time.

In Linux, ld.so or ld-linux.so, are the dynamic loader/linker (each for different types of binary).
Among the environment variables that affect their behaviors, LD LIBRARY PATH and LD PRELOAD are
the two that we are concerned in this lab. In Linux, LD LIBRARY PATH is a colon-separated set of di-
rectories where libraries should be searched for first, before the standard set of directories. LD PRELOAD
specifies a list of additional, user-specified, shared libraries to be loaded before all others. In this task, we
will only study LD PRELOAD.

Step 1. First, we will see how these environment variables influence the behavior of dynamic loader/linker
when running a normal program. Please follow these steps:

1. Let us build a dynamic link library. Create the following program, and name it mylib.c. It basically
overrides the sleep() function in libc:

#include <stdio.h>
void sleep (int s)
{
/* If this is invoked by a privileged program,

you can do damages here! */
printf("I am not sleeping!\n");

}

2. We can compile the above program using the following commands (in the -lc argument, the second
character is `):

$ gcc -fPIC -g -c mylib.c
$ gcc -shared -o libmylib.so.1.0.1 mylib.o -lc

3. Now, set the LD PRELOAD environment variable:

$ export LD_PRELOAD=./libmylib.so.1.0.1

4. Finally, compile the following program myprog, and in the same directory as the above dynamic link
library libmylib.so.1.0.1:

/* myprog.c */
#include <unistd.h>
int main()
{
sleep(1);
return 0;

}

Step 2. After you have done the above, please run myprog under the following conditions, and observe
what happens.

SEED Labs – Environment Variable and Set-UID Program Lab 7

• Make myprog a regular program, and run it as a normal user.

• Make myprog a Set-UID root program, and run it as a normal user.

• Make myprog a Set-UID root program, export the LD PRELOAD environment variable again in
the root account and run it.

• Make myprog a Set-UID user1 program (i.e., the owner is user1, which is another user account),
export the LD PRELOAD environment variable again in a different user’s account (not-root user) and
run it.

Step 3. You should be able to observe different behaviors in the scenarios described above, even though
you are running the same program. You need to figure out what causes the difference. Environment variables
play a role here. Please design an experiment to figure out the main causes, and explain why the behaviors
in Step 2 are different. (Hint: the child process may not inherit the LD * environment variables).

2.8 Task 8: Invoking External Programs Using system() versus execve()

Although system() and execve() can both be used to run new programs, system() is quite danger-
ous if used in a privileged program, such as Set-UID programs. We have seen how the PATH environment
variable affect the behavior of system(), because the variable affects how the shell works. execve()
does not have the problem, because it does not invoke shell. Invoking shell has another dangerous conse-
quence, and this time, it has nothing to do with environment variables. Let us look at the following scenario.

Bob works for an auditing agency, and he needs to investigate a company for a suspected fraud. For
the investigation purpose, Bob needs to be able to read all the files in the company’s Unix system; on the
other hand, to protect the integrity of the system, Bob should not be able to modify any file. To achieve this
goal, Vince, the superuser of the system, wrote a special set-root-uid program (see below), and then gave the
executable permission to Bob. This program requires Bob to type a file name at the command line, and then
it will run /bin/cat to display the specified file. Since the program is running as a root, it can display any
file Bob specifies. However, since the program has no write operations, Vince is very sure that Bob cannot
use this special program to modify any file.

Listing 3: catall.c
int main(int argc, char *argv[])
{

char *v[3];
char *command;

if(argc < 2) {
printf("Please type a file name.\n");
return 1;

}

v[0] = "/bin/cat"; v[1] = argv[1]; v[2] = NULL;
command = malloc(strlen(v[0]) + strlen(v[1]) + 2);
sprintf(command, "%s %s", v[0], v[1]);

// Use only one of the followings.
system(command);
// execve(v[0], v, NULL);

SEED Labs – Environment Variable and Set-UID Program Lab 8

return 0 ;
}

Step 1: Compile the above program, make it a root-owned Set-UID program. The program will use
system() to invoke the command. If you were Bob, can you compromise the integrity of the system? For
example, can you remove a file that is not writable to you?

Step 2: Comment out the system(command) statement, and uncomment the execve() statement;
the program will use execve() to invoke the command. Compile the program, and make it a root-owned
Set-UID. Do your attacks in Step 1 still work? Please describe and explain your observations.

2.9 Task 9: Capability Leaking

To follow the Principle of Least Privilege, Set-UID programs often permanently relinquish their root
privileges if such privileges are not needed anymore. Moreover, sometimes, the program needs to hand over
its control to the user; in this case, root privileges must be revoked. The setuid() system call can be
used to revoke the privileges. According to the manual, “setuid() sets the effective user ID of the calling
process. If the effective UID of the caller is root, the real UID and saved set-user-ID are also set”. Therefore,
if a Set-UID program with effective UID 0 calls setuid(n), the process will become a normal process,
with all its UIDs being set to n.

When revoking the privilege, one of the common mistakes is capability leaking. The process may have
gained some privileged capabilities when it was still privileged; when the privilege is downgraded, if the
program does not clean up those capabilities, they may still be accessible by the non-privileged process.
In other words, although the effective user ID of the process becomes non-privileged, the process is still
privileged because it possesses privileged capabilities.

Compile the following program, change its owner to root, and make it a Set-UID program. Run the
program as a normal user. Can you exploit the capability leaking vulnerability in this program? The goal is
to write to the /etc/zzz file as a normal user.

Listing 4: cap leak.c

void main()
{

int fd;
char *v[2];

/* Assume that /etc/zzz is an important system file,

* and it is owned by root with permission 0644.

* Before running this program, you should create

* the file /etc/zzz first. */
fd = open("/etc/zzz", O_RDWR | O_APPEND);
if (fd == -1) {

printf("Cannot open /etc/zzz\n");
exit(0);

}

// Print out the file descriptor value
printf("fd is %d\n", fd);

SEED Labs – Environment Variable and Set-UID Program Lab 9

// Permanently disable the privilege by making the
// effective uid the same as the real uid
setuid(getuid());

// Execute /bin/sh
v[0] = "/bin/sh"; v[1] = 0;
execve(v[0], v, 0);

}

3 Submission

You need to submit a detailed lab report, with screenshots, to describe what you have done and what you
have observed. You also need to provide explanation to the observations that are interesting or surprising.
Please also list the important code snippets followed by explanation. Simply attaching code without any
explanation will not receive credits.

	Overview
	Lab Tasks
	Task 1: Manipulating Environment Variables
	Task 2: Passing Environment Variables from Parent Process to Child Process
	Task 3: Environment Variables and execve()
	Task 4: Environment Variables and system()
	Task 5: Environment Variable and Set-UID Programs
	Task 6: The PATH Environment Variable and Set-UID Programs
	Task 7: The LD_PRELOAD Environment Variable and Set-UID Programs
	Task 8: Invoking External Programs Using system() versus execve()
	Task 9: Capability Leaking

	Submission

