
Secure Programming Lecture 1:
Introduction

David Aspinall

Informatics @ Edinburgh



Orientation

… This course is Secure Programming.

… More generally, it is about Software Security.

… Aimed at Informatics MSc and 4th/5th year

… Primarily: those anticipating a career in software
… programming: architects, developers, testers, . . .
… security: pentesters, malware/reverse engineers
… researchers: verification, compilers, languages, . . .

… It is taught by David Aspinall.

Public home page: https://opencourse.inf.ed.ac.uk/sp

Lecture recordings are available via Learn (UoE only).

http://www.inf.ed.ac.uk/teaching/courses/sp/
http://homepages.inf.ed.ac.uk/da
https://opencourse.inf.ed.ac.uk/sp
https://www.learn.ed.ac.uk/ultra/courses/_108554_1/outline


Outline

Motivations

Course syllabus

Software security overview

Practicalities

Structure of course

Summary



Ubiquitous software is broken (2014)



Ubiquitous hardware is flawed (2018)



Attacks can cause physical damage (2014)



Nobody can keep online records safe (2015)



Known good practice ignored (2015)



IoT easily raises a DDoS botnet army (2016)



Old systems break operations (2017)



Rogue updates via supply chains (2020)



Buggy updates in cyber security code (2024)



Why does this happen?

Ostensibly, many security failures are due to
software vulnerabilities. Are they inevitable?

Many surrounding questions. Can we:

… find vulnerabilities (before attacks)?
… detect exploits in-the-wild?
… repair vulnerabilities (routinely/automatically)?
… program better to avoid vulnerabilities?
… measure risk associated with software?
… design or verify to prevent them?
… develop new technology for all the above?

Questions beyond the technical, too. Can we:

… insure against cyber incidents?
… regulate for better security?



Outline

Motivations

Course syllabus

Software security overview

Practicalities

Structure of course

Summary



What is this course about?

Building software that’s more secure

… finding flaws in existing software
… avoiding flaws in new software (design and code)
… techniques, tools and understanding to do this

The infrastructure around secure software:

… language, libraries, run-time; other programs
… data storage, distribution, protocols and APIs
… development and deployment methods

And first of all, setting policies for security

… what should be protected
… who/what is trusted
… risk assessment: cost of defences.



Target audience

… Aimed at MSc, 4th/5th year UGs
… Have passed Computer Security or similar
… Basic notions, crypto, protocols

… Programming practice
… should be confident in programming
… necessarily will use a range of languages
… . . . including assember, C, Java
… but don’t have be “master hacker”
… grounded in software engineering

… Programming theory
… interest in PL concepts and design
… knowledge of compilers useful
… also software engineering, esp, testing
… theory courses helpful, semantics



Why should you take this course?

Want to work in the cyber security industry?

… security appraisal, system and code reviewing
… pen-testing, ethical hacking
… malware analysis, reverse engineering
… operations and response (SOCs)
… cyber defence, attack, espionage
… innovation: found a cyber start-up

Want to work in security research?

… academic (conceptual advances, fixing, breaking)
… commercial (breaking, fixing, defending)

(Hopefully): you think it’s fun and interesting!



Why should you not take this course?

… None of the previous points apply
… You don’t have the right background (see next slide)
… You’re wary of a course with a lot of breadth
… Perhaps: you know (almost all of) it already

Warning: We try to keep the course up-to-date so it is
sometimes “rough at the edges”.



Expected background

Please see Guide to Background Needed on course
homepage.

1. Security properties: C, I, A, non-repudiation, privacy

2. Attacks against each of these
3. Defences: Au x 2, access control, crypto, networks
4. Coding skills and problem solving
5. Practicals: command line Linux

http://www.inf.ed.ac.uk/teaching/courses/sp/background.html


Expected background

Please see Guide to Background Needed on course
homepage.

1. Security properties: C, I, A, non-repudiation, privacy
2. Attacks against each of these

3. Defences: Au x 2, access control, crypto, networks
4. Coding skills and problem solving
5. Practicals: command line Linux

http://www.inf.ed.ac.uk/teaching/courses/sp/background.html


Expected background

Please see Guide to Background Needed on course
homepage.

1. Security properties: C, I, A, non-repudiation, privacy
2. Attacks against each of these
3. Defences: Au x 2, access control, crypto, networks

4. Coding skills and problem solving
5. Practicals: command line Linux

http://www.inf.ed.ac.uk/teaching/courses/sp/background.html


Expected background

Please see Guide to Background Needed on course
homepage.

1. Security properties: C, I, A, non-repudiation, privacy
2. Attacks against each of these
3. Defences: Au x 2, access control, crypto, networks
4. Coding skills and problem solving

5. Practicals: command line Linux

http://www.inf.ed.ac.uk/teaching/courses/sp/background.html


Expected background

Please see Guide to Background Needed on course
homepage.

1. Security properties: C, I, A, non-repudiation, privacy
2. Attacks against each of these
3. Defences: Au x 2, access control, crypto, networks
4. Coding skills and problem solving
5. Practicals: command line Linux

http://www.inf.ed.ac.uk/teaching/courses/sp/background.html


Learning outcomes

1. Know how to respond to (software) security alerts.
2. Identify possible security programming errors when

conducting code reviews.
3. Be able to define a methodology for security testing

and use appropriate tools in its implementation.
4. Apply new security-enhanced programming models

and tools which help ensure security goals, e.g., with
access control, information flow tracking, protocol
implementation, or atomicity enforcement.



Outline

Motivations

Course syllabus

Software security overview

Practicalities

Structure of course

Summary



Safety versus security

Safety is concerned with ensuring bad things don’t
happen accidently. For example, aeroplanes don’t fall
out of the sky because maintenance checks are
forgotten.

Security is concerned with with ensuring that bad
things don’t happen because of malicious actions by
others. For example, terrorists cannot drive bombs into
airport departure halls.

The distinction is sometimes blurred, and the two
interact in intriguing ways. (Q. why?)

http://en.wikipedia.org/wiki/2007_Glasgow_International_Airport_attack


The challenge of software security

Software artefacts are among the most complex built.

… Design flaws are likely
… Bugs seem inevitable

Flaws and bugs lead to vulnerabilities which are
exploited by attackers.

Often to learn secrets, obtain money. But many other
reasons: a security risk assessment for a system should
consider different attackers and their motives.



The challenge of software security

Software artefacts are among the most complex built.

… Design flaws are likely
… Bugs seem inevitable

Flaws and bugs lead to vulnerabilities which are
exploited by attackers.

Often to learn secrets, obtain money. But many other
reasons: a security risk assessment for a system should
consider different attackers and their motives.



Cost estimates are difficult



But it’s agreed they’re increasing. . .



Cyber warfare is real



Privacy is being eroded



But maybe there is hope. . .



Why isn’t software security better?



Why (else) isn’t software security better?

… Asymmetry: attackers have the advantage
… just need to find one viable attack route
… defenders have to anticipate all

… Attackers focus on weakest links:
… since 1990s, network defences vastly improved
… rise of insider threats

… Current penetrate-and-patch approach is broken
… understandable by managers (“show me the

problem!”)
… but no substitute for secure design



What’s the outlook?

New frontiers:

… PCs in decline, but connected devices increasing
… Mobile a target point (convergence, mobility)
… Internet of Things: repeating same mistakes!
… Cloud: XaaS (X=software,storage,platforms,. . . )
… Cyber resilience: speedy, automatic recovery
… Data sharing and its limits: privacy

Emerging new solutions:

… Build Security In, Secure By Design
… Defensive technologies continuing to evolve
… New cryptographic, verification techniques
… Old ideas re-appear: MLS, containment, isolation
… Updates: automatic, pushed patching



Outline

Motivations

Course syllabus

Software security overview

Practicalities

Structure of course

Summary



Delivery and assessment

We will have

… 16-18 lectures covering core course topics
… 4 lab sessions
… 1 coursework contributing 30% of final mark
… 1 written exam contributing 70% of final mark

Lecture slides will be made available in several formats.

They have numerous embedded links to useful resources
(the links are more noticeable in the online versions).

Lecture recordings will be available, systems
permitting. These are intended as a backup for
attending in person.

http://www.inf.ed.ac.uk/teaching/courses/sp/


Lab sessions

Four core 3hr lab sessions (see home page):

… Weeks 3,5,7,9: Wed 2pm-5pm Appleton Tower 6.06

Each session will examine software vulnerabilities: why
they exist, how they can be discovered, exploited, and
repaired.

Working together is encouraged. We want to foster
a supportive learning environment. Students who have
prior knowledge or expertise are especially welcome.

We use the SEED Labs developed at Syracuse University,
New York. They are free to access for your own use.

http://www.inf.ed.ac.uk/teaching/courses/sp
https://seedsecuritylabs.org/


Formative feedback during Labs

One reason to introduce labs in this course is to allow us
to give face-to-face discussion and feedback on your
learning.

Lab sessions will be run by me together with the course
TAs Robert Flood and Elia Nikolaou.



Coursework

The coursework will follow a similar pattern to the lab
exercises: discover, explain, exploit then repair.

1. as usual: your work should be your own
2. no publication, please do not publish solutions

even after the deadline

(at least two reasons for last point).

The coursework is split into two parts, with a part 1
deadline in Week 6 and final deadline in Week 9.



An ethical point (reminder)

Nothing in this course is intended as incitement to
crack into running systems!

… Breaking into systems to “demonstrate” security
problems at best causes a headache to overworked
sysadmins, at worst compromises systems for many
users and could lead to prosecution
… If you spot a security hole in a running system,

don’t exploit it, instead contact the relevant
administrators or developers confidentially.
… To experiment with security holes, play with your

own machine, or better, your own private network
of machines.



Communications

… Fast moving subject, evolving course:
… honest, constructive feedback is very welcome

… As with any course, I welcome
… questions after lectures
… questions on Piazza (preferred)
… questions by email



Exam

Will follow the format:

… Choose 2 questions to answer from 3
… Two hours allowed

Towards the end of the course I will provide:

… a list of topics and concepts that may be examined
… a hint about the format of the questions

Some guidance will be published on the course web
pages.



Outline

Motivations

Course syllabus

Software security overview

Practicalities

Structure of course

Summary



Dimensions: practice and theory

Practice

… Programming securely, identifying security issues
… Mistakes in language, APIs, crypto, comms. . .
… Ultimately: detailed, highly specific knowledge

Theory

… Understand reasons for failure, ways to mitigate
… Understand advanced techniques, automated tools
… In general: transferable concepts and methods.

This is not really a “vocational” course. I hope it will give
you the foundation to allow you to rapidly develop
detailed specific knowledge needed later. There are a
number of certification schemes for building practical
knowledge.



Overview of topics

General organisation:

1. Threats
2. Vulnerabilities
3. Defences
4. Processes
5. Emerging Methods

We’ll look at details under each of these headings (in
various orders).



Outline

Motivations

Course syllabus

Software security overview

Practicalities

Structure of course

Summary



Review questions

Safety versus Security

… Explain the difference between these two, and why
ensuring security may be harder.

Security flaws and their impact on society.

… Explain some recent secure programming flaws that
made the news and explain what the underlying
problems were.
… Discuss the fundamental reasons that software

security fails and the wider questions around cyber
security.



References and reading

Some slides contain links which you can click on to find
referenced or connected material.

There is no single recommended course textbook,
although a few books will be mentioned and are on the
resource list.


	Motivations
	Course syllabus
	Software security overview
	Practicalities
	Structure of course
	Summary

