
Secure Programming Lecture 4: Memory Corruption II
(Stack & Heap Overflows)

David Aspinall

Informatics @ Edinburgh

1 / 52

Memory corruption in space and time

Spatial memory errors

An error happens because memory access goes outside the region of
memory that a data item is intended to occupy.

Temporal memory errors

An error happens because memory access happens in some region of
memory that the program ought not currently have access to.

This lecture focuses on spatial errors.

2 / 52

Buffer overflow

Buffer overflow is a common programming error.

▶ Simple cause:
▶ putting m bytes into a buffer of size n, for m>n
▶ corrupts the surrounding memory

▶ Simple fix:
▶ check size of data before/when writing

Overflow exploits, where corruption performs something specific the
attacker wants, can be very complex.

We’ll study examples to explain how devastating overflows can be,
looking at simple (mainly historical) stack overflows and heap
overflows.

Examples will use Linux/x86 to demonstrate; principles are similar on
other OSes/architectures.

3 / 52

Outline

Stack variable corruption

Executable code exploits

Shellcode

Redirecting execution

Heap overflows

Specific heap attacks

General heap attacks

Summary

4 / 52

How the stack works (reminder)

Stack (frames)
↑ high addresses

...

Data

Code
↓ low addresses

Memory

5 / 52

Corrupting stack variables

Local variables are put close together on the stack.

▶ If a stray write goes beyond the size of one variable
▶ . . . it can corrupt another

6 / 52

Application scenario
int authenticate(char *username, char *password) {

int authenticated; // flag, non-zero if authenticated
char buffer[1024]; // buffer for log message

authenticated = verify_password(username, password);

if (authenticated == 0) {
sprintf(buffer,

"Incorrect password for user %s\n",
username);

log("%s",buffer);
}
return authenticated;

}

▶ Vulnerability in authenticate() call to sprintf().
▶ If the username is longer than 995 bytes, data will be written past the

end of the buffer.
7 / 52

Possible stack frame before exploit
...

password: 0x080B8888

username: 0x080B4444

saved EIP (return addr)

saved EBP (frame ptr)

authenticated: 0x00000000

(undefined contents)

buffer start addr

buffer[1024]

...

1235

AAAAAA. . .

8 / 52

Stack frame after exploit

password: 0x080B8888

username: 0x080B4444

saved EIP (return addr)

saved EBP (frame ptr)

authenticated: 0x0000000A

AAAA

...

AAAA buffer start addr

buffer

1235

AAAAAA. . .

▶ If username is >995 letters long, authenticated is corrupted and
may be set to non-zero.
▶ E.g., char 1024=‘\n’, the low byte becomes 10.

9 / 52

Local variable corruption remarks

Tricky in practice:

▶ location of variables may not be known
▶ memory addresses can vary between invocations
▶ C standards don’t specify stack layout
▶ compiler moves things around, optimises layout

▶ effect depends on behaviour of application code

A more predictable, general attack works by corrupting the fixed
information in every stack frame: the frame pointer and return address.

10 / 52

Outline

Stack variable corruption

Executable code exploits

Shellcode

Redirecting execution

Heap overflows

Specific heap attacks

General heap attacks

Summary

11 / 52

Classic stack overflow exploit

...

return address

...

attack code

...

buffer

...

The malicious argument overwrites all
of the space allocated for the buffer, all
the way to the return address location.
The return address is altered to point
back into the stack, somewhere before
the attack code.
Typically, the attack code executes a
shell.

12 / 52

Attacker controlled execution

By over-writing the return address, the attacker may either:

1. set it to point to some known piece of the application code, or code
inside a shared library, which achieves something useful, or

2. supply his/her own code somewhere in memory, which may do
anything, and arrange to call that.

The second option is the most general and powerful.

How does it work?

13 / 52

Arbitrary code exploit

The attacker takes these steps:

1. write code useful for an attacker
2. store executable code somewhere in memory
3. use stack overflow to direct execution there

The attack code is known as shellcode. Typically, it launches a shell or
network connection.

Shellcode is ideally:

▶ small and self-contained
▶ position independent
▶ free of ASCII NUL (0x00) characters

Question. Why?

14 / 52

Arbitrary code exploit

1. write code useful for an attack
2. store executable code somewhere in memory
3. use stack overflow to direct execution there

15 / 52

Outline

Stack variable corruption

Executable code exploits

Shellcode

Redirecting execution

Heap overflows

Specific heap attacks

General heap attacks

Summary

16 / 52

Building shellcode

Consider spawning a shell in Unix. The code looks like this:
#include <unistd.h>
...
char *args[] = { "/bin/sh", NULL };
execve("/bin/sh", args, NULL)

▶ execve() is part of the Standard C Library, libc
▶ it starts a process with the given name and argument list and the

environment as the third parameter.

We want to write (relocatable) assembly code which does the same thing:
constructing the argument lists and then invoking the execve function.

17 / 52

Invoking system calls

To execute a library function, the code would need to find the location of
the function.

▶ for a dynamically loaded library, this requires ensuring it is loaded
into memory, negotiating with the linker
▶ this would need quite a bit of assembly code

It is easier to make a system call directly to the operating system.

▶ luckily, execve() is a library call which corresponds exactly to a
system call.

18 / 52

Invoking system calls

Linux system calls (32 bit x86) operate like this:

▶ Store parameters in registers EBX, ECX, . . .
▶ Put the desired system call number into AL
▶ Use the interrupt int 128 to trigger the call

19 / 52

Invoking a shell

Here is the assembly code for a simple system call invoking a shell:

.section .rodata # data section
args:

.long arg # char *["/bin/sh"]

.long 0 #
arg:

.string "/bin/sh"

.text

.globl main
main:

movl $arg, %ebx
movl $args, %ecx
movl $0, %edx
movl $0xb, %eax
int $0x80 # execve("/bin/sh",["/bin/sh"],NULL)
ret

20 / 52

From assembly to shellcode

However, this is not yet quite shellcode: it contains hard-wired (absolute)
addresses and a data section.

Question. How could you turn this into position independent code
without separate data?

21 / 52

From assembly to shellcode

Moreover, we need to find the binary representation of the instructions
(i.e., the compiled shell code).

This will be the data that we can then feed back into our attack.

22 / 52

$ gcc shellcode.s -o shellcode.out
$ objdump -d shellcode.out
...
080483ed <main>:
80483ed: bb a8 84 04 08 mov $0x80484a8,%ebx
80483f2: b9 a0 84 04 08 mov $0x80484a0,%ecx
80483f7: ba 00 00 00 00 mov $0x0,%edx
80483fc: b8 0b 00 00 00 mov $0xb,%eax
8048401: cd 80 int $0x80
8048403: c3 ret

▶ We take the hex op code sequence bb a8 84... etc and encode it as
a string (or URL, filename, etc) to feed into the program as malicious
input.

There’s a bit of an art to crafting shellcode for different architectures and
scenarios. Handily many examples are online. For example, at
shell-storm.org/shellcode or www.exploit-db.com/shellcodes.

23 / 52

https://www.exploit-db.com/shellcodes

Outline

Stack variable corruption

Executable code exploits

Shellcode

Redirecting execution

Heap overflows

Specific heap attacks

General heap attacks

Summary

24 / 52

Arbitrary code exploit

1. write code useful for an attacker
2. store executable code somewhere in memory
3. use stack overflow to direct execution there

Two options:

▶ shellcode on stack
▶ shellcode in another part of the program data

Problem in both cases is :

▶ how to find out where the code is?

25 / 52

Attack code on stack: the NOP sled
...

corrupted ret. addr.

...

attack code

NOP

...

NOP

The exact address of the attack code in
the stack is hard to guess.
The attacker can increase the chance of
success by allowing a range of
addresses to work.
The overflow uses a NOP sled, which the
CPU execution "lands on", before being
directed to the attack code.

26 / 52

Attack code elsewhere in memory
...

password: 0x080B8888

username: 0x080B4444

saved EIP 0x0BADC0DE

saved EBP 0x41414141

authenticated: 0x41414141

AAAA

...

AAAA buffer start addr

buffer

user-controlled data
seeded with

executable code

▶ Various (sometimes intricate) possibilities
▶ . . . in an environment variable, modifying function pointers,

corrupting caller’s saved frame pointer 27 / 52

Stack smashing without shellcode

Sometimes an attacker cannot directly inject code which gets executed,
but can still corrupt return addresses.

Return to library (ret2libc)

The attacker overflows a buffer causing the return instruction to jump to
invoke system() with an argument pointing to /bin/sh.

Return-oriented Programming (ROP)

Sequences of instructions (gadgets) from library code are assembled
together to manipulate registers, eventually to invoke an library function
or even to make a Turing-complete language.

28 / 52

Outline

Stack variable corruption

Executable code exploits

Shellcode

Redirecting execution

Heap overflows

Specific heap attacks

General heap attacks

Summary

29 / 52

Heap overflows: overview

The heap is the region of memory that a program uses for dynamically
allocated data.

The runtime or operating system provides memory management for the
heap.

With explicit memory management, the programmer uses library
functions to allocate and deallocate regions of memory.

30 / 52

Memory safety and undefined behaviour
Memory safety

A programming language enforces memory safety if it ensures that reads
and writes stay within clearly defined memory areas.

Undefined behaviour

A programming language specification defines the meaning of programs.
Without memory safety, the specification may say the meaning of an
illegal memory access is undefined.

Question. What is the benefit of using "undefined" behaviour in a
language spec?

Question. What risks do you see for software security with "undefined"
behaviour?

31 / 52

Memory allocation in C

malloc(size) tries to allocate a space of size bytes.

▶ It returns a pointer to the allocated region
▶ . . . of type void* which the programmer can cast to the desired

pointer type
▶ or it fails and returns a NULL pointer
▶ The memory is uninitialised so should be written to before being

read from

Question. Which points above contribute to (memory) unsafe behaviour
in C?

32 / 52

Memory allocation in C

calloc(size) behaves like malloc(size) but it also initialises the
memory, clearing it to zeroes.

Question. Suppose we allocate a string buffer, and immediately assign
the empty string to it.

What security reason may there be to prefer calloc() over malloc()?

33 / 52

Memory allocation in C

free(ptr) frees the previously allocated space at ptr.

▶ No return value (void)
▶ If it fails (ptr a non-allocated value), what happens?
▶ if ptr is NULL, nothing
▶ “undefined” otherwise,
▶ program may abort, or might carry on and let bad things happen

▶ What happens if ptr is dereferenced after being freed?
▶ depends on behaviour of allocator

Question. Suppose we accidently call free(ptr) before the final
dereference of ptr() but before another call to malloc(). Is that safe?

34 / 52

Outline

Stack variable corruption

Executable code exploits

Shellcode

Redirecting execution

Heap overflows

Specific heap attacks

General heap attacks

Summary

35 / 52

Simple heap variable attack

Without memory safety, heap-allocated variables may overflow from one
to another.

char *user = (char *)malloc(sizeof(char)*8);
char *adminuser = (char *)malloc(sizeof(char)*8);

strcpy(adminuser, "root");

if (argc > 1)
strcpy(user, argv[1]);

else
strcpy(user, "guest");

/* Now we'll do ordinary operations as "user" and
create sensitive system files as "adminuser" */

▶ Is it possible to overflow user and change adminuser ?

36 / 52

Simple heap variable attack

Problem: how do we know where the allocations will be made?

▶ Heap allocator is free to allocate anywhere, not necessarily in
adjacent memory

Let’s investigate what happens on Linux x86, glibc.

(for a particular version, on a particular day, . . .)

37 / 52

Simple heap variable attack
#include <stdlib.h>
#include <string.h>
#include <stdio.h>

void main(int argc, char *argv[]) {

char *user = (char *)malloc(sizeof(char)*8);
char *adminuser = (char *)malloc(sizeof(char)*8);

strcpy(adminuser, "root");

if (argc > 1)
strcpy(user, argv[1]);

else
strcpy(user, "guest");

printf("User is at %p, contains: %s\n", user, user);
printf("Admin user is at %p, contains: %s\n", adminuser, adminuser);

}

38 / 52

$ gcc useradminuser.c -o useradminuser.out
$./useradminuser.out
User is at 0x9504008, contains: guest
Admin user is at 0x9504018, contains: root

$./useradminuser.out
User is at 0x9483008, contains: guest
Admin user is at 0x9483018, contains: root

$./useradminuser.out frank
User is at 0x8654008, contains: frank
Admin user is at 0x8654018, contains: root

▶ Buffers not adjacent, there’s some extra space
▶ Addresses not identical each run
▶ But admin user is stored higher in memory!

39 / 52

Let’s try overflowing. . . .
$./useradminuser.out frank........david
User is at 0x9405008, contains: frank........david
Admin user is at 0x9405018, contains: id

Count more carefully:
$./useradminuser.out frank56789ABCDEFdavid
User is at 0x9f0b008, contains: frank56789ABCDEFdavid
Admin user is at 0x9f0b018, contains: david

Whoa!

Question. Can you think of a way to prevent this attack?

40 / 52

Let’s try overflowing. . . .
$./useradminuser.out frank........david
User is at 0x9405008, contains: frank........david
Admin user is at 0x9405018, contains: id

Count more carefully:
$./useradminuser.out frank56789ABCDEFdavid
User is at 0x9f0b008, contains: frank56789ABCDEFdavid
Admin user is at 0x9f0b018, contains: david

Whoa!

Question. Can you think of a way to prevent this attack?

40 / 52

Let’s try overflowing. . . .
$./useradminuser.out frank........david
User is at 0x9405008, contains: frank........david
Admin user is at 0x9405018, contains: id

Count more carefully:
$./useradminuser.out frank56789ABCDEFdavid
User is at 0x9f0b008, contains: frank56789ABCDEFdavid
Admin user is at 0x9f0b018, contains: david

Whoa!

Question. Can you think of a way to prevent this attack?

40 / 52

Remarks about heap variable attack

▶ same kind of attack is possible for (mutable) global variables,
which are allocated statically in another memory segment
▶ this is an application-specific attack, need to find security-critical

path near overflowed variable
▶ need to be lucky: overwriting intervening memory might cause

crashes later, before the program gets to use the intentionally
corrupted data

Is there a more generic attack for the heap?

41 / 52

Outline

Stack variable corruption

Executable code exploits

Shellcode

Redirecting execution

Heap overflows

Specific heap attacks

General heap attacks

Summary

42 / 52

Heap allocator implementation

A common heap implementation is to use blocks laid out contiguously in
memory, with a free list intermingled.

Heap blocks have headers which give information such as:

▶ size of previous block
▶ size of this block
▶ flags, e.g., in-use flag
▶ if not in use, pointers to next/previous free block

The doubly-linked free list makes finding spare memory fast for the
malloc() operation.

43 / 52

Heap allocator implementation

typedef struct mallocblock {
struct mallocblock *next;
struct mallocblock *prev;
int prevsize;
int thissize;
int freeflag;
// malloc space follows the header

} mallocblock_t;

▶ If freeflag is non-zero, the block is in the freelist
▶ Allocator will split blocks and coalesce them again

44 / 52

General heap overflow attack

Rough idea:

▶ Coalescing blocks unlinks them from the free list
▶ Attacker makes unlink() do an arbitrary write!
▶ uses overflow to set next and previous
▶ and set flags to indicate free
▶ unlink() then performs write

45 / 52

Unlinking operation

void unlink(mallocblock_t *element) {
mallocblock_t *mynext = element->next;
mallocblock_t *myprev = element->prev;

mynext->prev = myprev;
myprev->next = mynext;

}

▶ performs two (related) word writes
▶ mynext->prev=*mynext+2, myprev->next=*myprev

▶ attacker arranges at least one of these to be useful

Exercise. Check you understand this: draw a picture of a doubly linked
list and explain how the attacker can make an arbitrary write.

46 / 52

Writing to arbitrary locations

What locations might the attacker choose?

▶ Global Offset Table (GOT) used to link ELF-format binaries. Allows
arbitrary locations to be called instead of a library call.
▶ Exit handlers used in Unix for return from main().
▶ Lock pointers or exception handlers stored in the Windows Process

Environment Block (PEB)
▶ Application-level function pointers (e.g. C++ virtual member tables).

The details are intricate, but library exploits and tookits are available
(e.g., Metasploit).

47 / 52

Heap spraying and browser exploits

Apart from operating system (C code) memory management, other
application runtimes provide memory allocation features, which may be
accessible to an attacker.

A particular case is in browser-based exploits which have made use of
heaps for managed runtimes such as JavaScript+HTML as well as
previous technologies such as VBScript and Flash.

Writing shell code to predictable heap locations is sometimes called heap
spraying. This is simple in concept: string variables manipulated in
scripts are allocated in a heap.

48 / 52

Outline

Stack variable corruption

Executable code exploits

Shellcode

Redirecting execution

Heap overflows

Specific heap attacks

General heap attacks

Summary

49 / 52

Review questions
Stack overflows

▶ Explain how uncontrolled memory writing can let an attacker corrupt
the value of local variables.
▶ Explain how an attacker can exploit a stack overflow to execute

arbitrary code.
▶ Draw an stack during a stack overflow attack with a NOP sled and

shell code, giving addresses

Heap overflows

▶ Describe the API functions used to interface to heap allocation in C.
Give two examples of risky behaviour.
▶ Show how overflowing one heap-allocated variable can corrupt a

second.
▶ Explain how a heap overflow attack can exploit memory allocation

routines to allow arbitrary writes.

50 / 52

Coming next

We’ll look at other kinds of overflow attacks, and some general protection
mechanisms.

The best way to understand these attacks is to try them out!

We recommend trying the SEED Labs buffer overflow labs for some good
walk-throughs.

51 / 52

https://seedsecuritylabs.org/

References and credits

This lecture included examples from:

▶ M. Dowd, J. McDonald and J. Schuh. The Art of Software Security
Assessment, Addison-Wesley 2007.

52 / 52

http://www.amazon.co.uk/Art-Software-Security-Assessment-Vulnerabilities/dp/0321444426
http://www.amazon.co.uk/Art-Software-Security-Assessment-Vulnerabilities/dp/0321444426

	Stack variable corruption
	Executable code exploits
	Shellcode
	Redirecting execution

	Heap overflows
	Specific heap attacks
	General heap attacks

	Summary

