
Secure Programming Lecture 7: SQL Injection

David Aspinall

Informatics Edinburgh

1 / 58

Outline
Overview

Past attacks

Vulnerable code examples

Classification

Injection route and motive

Forms of SQL code injected

Prevention and detection

Summary

2 / 58

Recap

Injection attacks use specially crafted inputs to subvert the intended
operation of applications.

▶ Operating System Command Injections may execute arbitrary
commands. Most dangerous.
▶ SQL Injections can reveal database contents, affect the results of

queries used for authentication; sometimes they can even execute
commands. Often accessible indirectly via web servers; most prolific.

In this lecture we look at SQL Injections in some detail.

3 / 58

Context

SQL Injection (SQLi) has regularly featured high in lists of the most
common software vulnerabilities.

▶ Akami’s 2021 State of the Internet report recorded that SQLi was top
of the attack list with 6.2 billion attempts recorded over 18 months.

As with overflows, there is a large body of crafty exploits made
possible by (often small) errors in coding or design.

We will look at:

▶ SQLi attack types and mechanisms
▶ detecting SQLi
▶ preventing SQLi

Even if you believe you are safe from SQLi, it is useful to understand the range of
problems and solutions. And a “NoSQL” database doesn’t mean no NoSQL injections!

4 / 58

https://www.akamai.com/our-thinking/the-state-of-the-internet/global-state-of-the-internet-security-ddos-attack-reports

xkcd #327

5 / 58

bobby-tables.com: great idea, but incomplete

6 / 58

SQL Queries

SQL: standard language for interacting with databases

▶ very common with web applications
▶ authentication: DB of users, passwords
▶ main function often data storage

▶ but also in desktop and server apps
▶ music player applications, media servers
▶ application caches
▶ custom corporate database clients

Question. Why might the second category cause concern for security
auditing?

7 / 58

Network versus local injections

Network usually considered the bigger risk

▶ Access by many, unknown users
▶ Network is gateway, crossing physical boundaries
▶ Risk in privileged servers (setuid, etc)

Local inputs: should they be considered too?

▶ Local users can only deny access to themselves
▶ desktop apps run as plain user, only risk own data

However, this trust assumption can be wrong:

▶ drive-by exploits attack locally (or use escalation)
▶ insider threats shouldn’t be overlooked

8 / 58

Outline
Overview

Past attacks

Vulnerable code examples

Classification

Injection route and motive

Forms of SQL code injected

Prevention and detection

Summary

9 / 58

How I hacked PacketStorm (1988-2000)

-- Advisory RFP2K01 ------------------------------ rfp.labs ------------

"How I hacked PacketStorm"

A look at hacking wwwthreads via SQL

------------------------------- rain forest puppy / rfpwiretrip.net ---

▶ One of the first public examples and explanation
▶ Demonstrated retrieval of 800 passwords
▶ See Rain Forest Puppy’s advisory and his earlier Phrack 54 article

10 / 58

http://sebug.net/paper/Exploits-Archives/2000-exploits/0002-exploits/rfp2k01.txt
http://www.phrack.org/issues.html?issue=54&id=8

Man steals 130m card records (2009)

11 / 58

Provocation: Swedish pencil vote (2010)

12 / 58

Should know better (2011)

13 / 58

Should know better (2013)

14 / 58

Should know better (2015)

15 / 58

16 / 58

Provocation: British company name (2016)

See the reddit thread

17 / 58

https://www.reddit.com/r/sysadmin/comments/5l030g/someone_just_registered_an_interesting_company/

Bug bounties in Hack U.S. (4th July 2022)

18 / 58

Outline
Overview

Past attacks

Vulnerable code examples

Classification

Injection route and motive

Forms of SQL code injected

Prevention and detection

Summary

19 / 58

Typical setting for attacks

Picture from SQL Injection Attacks and Defense, J. Clarke, Syngress, 2012

20 / 58

http://www.amazon.co.uk/Injection-Attacks-Defense-Justin-Clarke/dp/1597494240

Typical vulnerability in PHP code
$username = $HTTP_POST_VARS['username'];
$password = $HTTP_POST_VARS['passwd'];

$query = "SELECT * FROM logintable WHERE user = '"
. $username . "' AND pass = '" . $password . "'";

...
$result = mysql_query($query);

if (!$results)
die_bad_login();

Guaranteed login! Try with:

user name: bob' OR user<>'bob
password: foo' OR pass<>'foo

which gives
SELECT * FROM logintable WHERE user=
'bob' or user<>'bob' AND pass='foo' OR pass<>'foo'

21 / 58

Fixes: in-band versus out-of-band
▶ The “in-band” solution is to use filtering to escape banned characters.

In-band use sanitization or filtering to remove banned characters

▶ PHP and MySQL, for example, provide functions to help do this,
guaranteeing meta-characters are quoted.

Out-of-band use a prepared query with parameters carved out

▶ Parameters get safely substituted into query without interpreting user
text as commands

A more general “out-of-band” solution is to use embedded programming
language support. For example:

▶ Object-Relational Mapping database is interrogated via objects or
▶ LINQ, Language-Integrated Query in .NET.

Question. Why might out-of-band fixes be preferred?
22 / 58

An example in Java servlet code

1 public class Show extends HttpServlet {
2 public ResultSet getuserInfo(String login, String pin) {
3 Connection conn = DriverManager.getConnection("MyDB"};
4 Statement stmt = conn.createStatement();
5 String queryString = "";
6

7 queryString = "SELECT accounts FROM users WHERE ";
8 if ((! login.equals("")) && (! pin.equals(""))) {
9 queryString += "login='" + login +

10 "' AND pin=" + pin;
11 } else {
12 queryString+="login='guest'";
13 }
14

15 ResultSet tempSet = stmt.execute(queryString);
16 return tempSet;
17 }
18 }

23 / 58

Normal usage

7 queryString = "SELECT accounts FROM users WHERE ";
8 if ((! login.equals("")) && (! pin.equals(""))) {
9 queryString += "login='" + login +

10 "' AND pin=" + pin;
11 } else {
12 queryString+="login='guest'";
13 }

User submits login="john" and pin="1234"

SQL issued:
SELECT accounts FROM users WHERE login='john' AND pin=1234

24 / 58

Malicious usage

7 queryString = "SELECT info FROM users WHERE ";
8 if ((! login.equals("")) && (! pin.equals(""))) {
9 queryString += "login='" + login +

10 "' AND pin=" + pin;
11 } else {
12 queryString+="login='guest' ";
13 }

User submits login="admin' --" and pin="0"

SQL issued:
SELECT accounts FROM users WHERE login='admin' --' AND pin=0

25 / 58

Quotation and meta-characters

Warnings about meta-characters also apply to SQL. They can vary by DB
engine, even by configuration.

26 / 58

Outline
Overview

Past attacks

Vulnerable code examples

Classification

Injection route and motive

Forms of SQL code injected

Prevention and detection

Summary

27 / 58

Classifying SQL injections

There are a wide variety of SQL injection techniques. Sometimes several
are used to mount a single attack.

It’s useful to examine:

▶ route – where injection happens
▶ motive — what it aims to achieve
▶ SQL code — the form of SQL injected

These slides follow A Classification of SQL Injection Attacks and Countermeasures by
Halfond, Viegas and Orso. ISSE 2006.

28 / 58

http://www.cc.gatech.edu/fac/Alex.Orso/papers/halfond.viegas.orso.ISSSE06.pdf

Outline
Overview

Past attacks

Vulnerable code examples

Classification

Injection route and motive

Forms of SQL code injected

Prevention and detection

Summary

29 / 58

Injection routes

▶ User input e.g., web forms via HTTP GET or POST
▶ Cookies used by web apps to build queries
▶ Server variables logged by web apps (e.g., http headers)
▶ In so-called second-order injections the injection is separated from

attack

30 / 58

Primary and auxiliary motives

Primary motives may be:

▶ Extracting data
▶ Adding or modifying data
▶ Mounting a denial of service attack
▶ Bypassing authentication
▶ Executing arbitrary commands

Auxiliary motives may be

▶ Finding injectable parameters
▶ Database server finger-printing
▶ Finding database schema
▶ Escalating privilege at the database level

31 / 58

Outline
Overview

Past attacks

Vulnerable code examples

Classification

Injection route and motive

Forms of SQL code injected

Prevention and detection

Summary

32 / 58

Forms of SQL code injected

1. Tautologies
2. Illegal/incorrect queries
3. Union query
4. Piggy-backed queries
5. Inference pairs
6. Stored procedures and other DB engine features

Additionally, the injection may use alternate encodings to try to defeat
sanitization routines that don’t interpret them (e.g., char(120) instead of
x).

Exercise. For each of these types (described next), consider which
primary/secondary motive(s) might apply.

33 / 58

Tautologies

Inject code into condition statement(s) so they always evaluate to true.
SELECT accounts FROM users WHERE
login='' or 1=1 -- AND pin=

Blocking tautologies using a deny list is difficult

▶ Many ways of writing them: 1>0, 'x' LIKE 'x', . . .
▶ Quasi tautologies: very often true RAND()>0.01, . . .

Question. Instead of a tautology, can you think of how an attacker might
use an always-false condition?

34 / 58

https://www.owasp.org/index.php/SQL_Injection_Cookbook_-_Oracle#SQL_Tautologies
http://blog.didierstevens.com/2010/02/02/quickpost-quasi-tautologies-sql-injection/

Illegal/incorrect

Cause a run-time error, hoping to learn information from error responses.
SELECT accounts FROM users WHERE
login='' AND pin=convert(int,(select top 1 name from

sysobjects where xtype='u'))

▶ Supposes MS SQL server
▶ sysobjects is server table of metadata

▶ Tries to find first user table
▶ Converts name into integer: runtime error

35 / 58

Example response

Microsoft OLE DB Provider for SQL Server (Ox80040E07)
Error converting nvarchar value 'CreditCards'
to a column of data type int

Tells the attacker:

▶ MS SQL Server is running
▶ The first user-defined table is called CreditCards

36 / 58

Union query

Inject a second query using UNION:
SELECT accounts FROM users WHERE

login='' UNION SELECT cardNo from CreditCards where
acctNo=10032 -- AND pin=

▶ Suppose there are no tuples with login=''
▶ Result: may reveal cardNo for account 10032

37 / 58

Piggy-backed (sequenced) queries

The Bobby Tables attack is an example of a piggy-backed query.

The attacker injects a second, distinct query:
SELECT accounts FROM users WHERE

login=’doe’; drop table users -- ’ AND pin=

▶ Database parses second command after ‘;’
▶ Executes second query, deleting users table
▶ NB: some servers don’t need ; character

38 / 58

Inference pairs

Suppose error responses are correctly captured and not seen by the
client.

It might still be possible to extract information from the database, by
finding some difference between outputs from pairs of queries.

▶ A Blind Injection tries to reveal information by exploiting some
visible difference in outputs.

▶ A Timing Attack tries to reveal information by making a difference
in response time dependent on a boolean (e.g., via WAITFOR)

If the attacker has unlimited access, these can be used in repeated,
automated, differential analysis.

39 / 58

Blind injection example

Idea: discover whether login parameter is vulnerable with two tests.

Step 1. Always true:
login=’legalUser’ and 1=1 -- ’

Step 2. Always false:
login=’legalUser’ and 1=0 -- ’

40 / 58

Blind injection example

Step 1
SELECT accounts FROM users WHERE login=’legalUser’ and 1=1 -- ’

RESPONSE: INVALID PASSWORD

The attacker thinks:
Perhaps my invalid input was detected and rejected, or perhaps
the username query was executed separately from the password
check.

41 / 58

Blind injection example

Step 2
SELECT accounts FROM users WHERE login=’legalUser’ and 1=0 -- ’

RESPONSE: INVALID USERNAME AND PASSWORD

The attacker thinks:
Aha, the response is different! Now I can infer that the login
parameter is injectable.

42 / 58

Stored procedures

Stored procedures are custom sub-routines which provide support for
additional operations.

▶ May be written in scripting languages.
▶ Can open up additional vulnerabilities.

CREATE PROCEDURE DBO.isAuthenticated
userName varchar2, pin int
AS
EXEC("SELECT accounts FROM users
WHERE login=’" +userName+ "’ and pass=’" +pass+

"’ and pin=" +pin);
GO

varchar2 is an Oracle datatype for variable length strings

43 / 58

Stored procedures

This is invoked with something like:
EXEC DBO.isAuthenticated 'david' 'bananas' 1234

44 / 58

Stored procedures

Or something like:
EXEC DBO.isAuthenticated ’ ; SHUTDOWN; --' '' ''

which results in:
SELECT accounts FROM users WHERE
login=’doe’ pass=’ ’; SHUTDOWN; -- AND pin=

45 / 58

An especially dangerous stored procedure

Microsoft SQL Server offers: xp_cmdshell, which allows operating
system commands to be executed!
EXEC master..xp_cmdshell 'format c:'

▶ Since SQL Server 2005, this is disabled by default
▶ . . . but might be switched back on by DB admins
▶ . . . maybe from inside the db?!

Lesson: access control and passwords may be critical inside the DB,
even for restricting attacks outside.

46 / 58

Other database server features

There are other features offered variously depending on the DB engine.

For example, queries in MySQL can write files with the idiom:
SELECT INTO outfile.txt ...

Question. Why might writing files be of use to an attacker?

47 / 58

Outline
Overview

Past attacks

Vulnerable code examples

Classification

Injection route and motive

Forms of SQL code injected

Prevention and detection

Summary

48 / 58

How do I repair an SQLi vulnerability?

Mentioned earlier:

▶ filtering to sanitize inputs
▶ prepared (aka parameterized) queries

Both methods are server side, so it is better to use database driver
gitlibraries to abstract away from the underlying DB engine.

In Java, JDBC provides the PreparedStatement class.

We’ll look at further relevant secure coding issues later lectures; in particular, ways of
managing input and also output filtering.

Question. What type of SQL attacks might PreparedStatements not
prevent against?

49 / 58

How do I prevent SQLi vulnerabilities?

Choice of stages (as usual):

1. eliminate before deployment:
▶ use programming language support; object-relational mapping
▶ manual code review or automatic static analysis

2. in testing or deployment:
▶ pen testing tools
▶ instrumented code

3. after deployment:
▶ wait until attacked, manually investigate
▶ use dynamic remediation plus alarms (app firewall or specialised

technique)

Some examples follow.

50 / 58

Detection externally: pen testing tools

Tools like these incorporate the injection methods shown before, to explore a server for
typical vulnerabilities.

51 / 58

Static prevention: automated analysis

Idea: static code analysis used to warn programmer or prohibit/fix
vulnerable code.

Techniques:

▶ Detect suspicious code patterns, e.g., dynamic query construction
▶ Use static taint analysis to detect data-flows from input parameters

to queries

We’ll look at static analysis generally in more detail later.

52 / 58

Dynamic detection tool: AMNESIA

Idea: use static analysis pre-processing to generate a dynamic detection
tool:

1. Find SQL query-generation points in code
2. Build SQL-query model as NDFA which models SQL grammar,

transition labels are tokens
3. Instrument application to call runtime monitor
4. If monitor detects violation of state machine, triggers error,

preventing SQL query

53 / 58

State machine for SQL production

▶ Variable β: matches any string in SQL grammar
▶ Spots violation in injectable parameters
▶ abort query if model not in accepting state

See Halfond and Orso, AMNESIA: Analysis and Monitoring for NEutralizing SQL-injection
Attacks, Automated Software Engineering, 2005

54 / 58

http://dl.acm.org.ezproxy.is.ed.ac.uk/citation.cfm?id=1101935
http://dl.acm.org.ezproxy.is.ed.ac.uk/citation.cfm?id=1101935

Dynamic prevention: SQLrand

Idea: use instruction set randomization to change language dynamically
to use opcodes/keywords that attacker can’t easily guess.

See Boyd and Keromytis, SQLrand: Preventing SQL Injection Attacks, Applied
Cryptography and Network Security, 2004

55 / 58

http://link.springer.com.ezproxy.is.ed.ac.uk/chapter/10.1007/978-3-540-24852-1_21

Outline
Overview

Past attacks

Vulnerable code examples

Classification

Injection route and motive

Forms of SQL code injected

Prevention and detection

Summary

56 / 58

Review questions

SQLi classification

▶ Describe three routes for SQL injection.
▶ Describe three auxiliary motives that an attacker may have when

using SQL injection techniques to learn about a target.

SQLi prevention and detection

▶ How would you repair the prototypical example SQLi vulnerability?
▶ Describe automatic ways to prevent and detect SQLi vulnerabilities.

57 / 58

References and credits

This lecture includes content adapted from:

▶ A Classification of SQL Injection Attacks and Countermeasures by
Halfond, Viegas and Orso. ISSE 2006
▶ SQL Injection Attacks and Defense, Edited by Justin Clarke, Syngress.

2nd Edition 2012.

58 / 58

http://www.cc.gatech.edu/fac/Alex.Orso/papers/halfond.viegas.orso.ISSSE06.pdf
http://www.amazon.co.uk/Injection-Attacks-Defense-Justin-Clarke/dp/1597494240

	Overview
	Past attacks
	Vulnerable code examples
	Classification
	Injection route and motive
	Forms of SQL code injected

	Prevention and detection
	Summary

