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Recap

We have looked at:

▶ examples of vulnerabilities and exploits
▶ particular programming failure patterns
▶ software based mitigations

In this lecture we consider a new vulnerability category and also a new
defence strategy

▶ language-based security principles

for (ensuring) secure programs.

We introduce security vulnerabilities that can arise in concurrent systems,
due to multi-processes or multi-threading.
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Race conditions with check before use

res = access("/tmp/userfile", R_OK);
if (res!=0)

die("access");

/* ok, we can read from /tmp/userfile */
fd = open("/tmp/userfile", O_RDONLY);
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API docs (GNU C library: man access)
int access(const char *pathname, int mode)

DESCRIPTION
access() checks whether the calling process can access the file
pathname. If pathname is a symbolic link, it is dereferenced.

The mode specifies the accessibility check(s) to be performed, and
is either the value F_OK, or a mask consisting of the bitwise OR
of one or more of R_OK, W_OK, and X_OK. [...]

The check is done using the calling process's real UID and GID,
rather than the effective IDs as is done when actually attempting
an operation (e.g., open(2)) on the file. [...]

RETURN VALUE
On success (all requested permissions granted, or mode is F_OK
and the file exists), zero is returned. On error (at least one
bit in mode asked for a permission that is denied, or mode is
F_OK and the file does not exist, or some other error occurred),
-1 is returned [...]
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Race conditions with check before use

res = access("/tmp/userfile", R_OK);
if (res!=0)

die("access");

/* ok, we can read from /tmp/userfile */
fd = open("/tmp/userfile", O_RDONLY);

▶ access() is designed for setuid programs
▶ privilege check on real user id (user running prog)
▶ open() returns a file descriptor
▶ f.d. is data type that refers to specific file
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Time of Check to Time of Use (TOCTOU)
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How can this be exploited?

▶ Unix runs multiple processes at once
▶ Attacker runs a process alongside suid program
▶ Must attack at exactly right moment

▶ Processes are scheduled by the OS
▶ maybe on multiple CPUs

▶ Attacker may be able to influence scheduling
▶ slow down system, send job control signals

▶ Attacker may be able to automatically schedule attack
▶ e.g. Linux inotify API for monitoring file system
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General problem: repeatedly looking up pathnames

Kernel resolves pathnames to inodes using file system.

Looking up file status twice repeats this:
stat("/tmp/bob", &sb);
...
stat("/tmp/bob", &sb);

If /tmp/bob (or /tmp/) change between the two calls, different files are
examined by the two calls!
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Fix: using file descriptors instead

File descriptors contain the resolved inode.
fd=open("/tmp/bob", O_RDWR);
fstat(fd, &sb);
...
fstat(fd, &sb);

This always examines the same (actual) file on disk twice, whatever
/tmp/bob points to by the second call.

Even if the file has been deleted from the filesystem the inode is not
deallocated until the reference count becomes zero.
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Risky patterns: using same filename twice

1. A status check like
▶ stat()
▶ lstat()
▶ access()

2. An access to the file like
▶ open(), fopen(),
▶ chmod(), chgrp(), chown(),
▶ unlink(), rename(),
▶ link(), symlink()

Better to use the file descriptor based calls instead:

▶ fstat(), fchmod(), and fchown()

Windows APIs a bit better here (but still tricky areas like the following).
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Permission Races

FILE *fp;
int fd;

if (!(fp=fopen(myfile, "w+")))
die("fopen");

/* we'll use fchmod() to prevent a race condition */
fd=fileno(fp);
/* let's modify the permissions */
if (fchmod(fd, 0600)==-1)

die("fchmod");

▶ fopen() creates a file with default perms 0666 (-rw-rw-rw)!

Exercise. (Recall labs): review the codes for file permissions and masks
on Linux.
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Ownership races
drop_privs();

if ((fd=open(myfile, O_RDWR | O_CREAT | O_EXCL, 0600))<0)
die("open");

regain_privs();

/* take ownership of the file */
if (fchown(fd, geteuid(), getegid())==-1)

die("fchown");

A broken attempt in a setuid program: creates a file as calling user, then
sets ownership as root. Unprivileged users may get file descriptor
between steps.

Note: O_EXCL suggests “exclusivity” but really means file should not already exist, it has
no effect on ability to access the file!
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Directory position race

GNU file utils had a race vulnerability in recursive deletion. Example
strace for rm -fr /tmp/a removing /tmp/a/b/c tree:

chdir("/tmp/a")
chdir("b")
chdir("c")
chdir("..")
rmdir("c")
chdir("..")
rmdir("b")
fchdir(3)
rmdir("/tmp/a")

Question. Can you see an attack here?

▶ let rm work until it gets into /tmp/a/b/c
▶ move c directory to /tmp/c
▶ then two chdir("..")s navigate to /
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Races with temporary files
char temp[1024];
int fd;
strcpy(temp, "/tmp/tmpXXXX");
if (!mktemp(temp))

die("mktemp");
fd=open(temp, O_CREAT | O_RDWR, 0700);
if (fd<0)
{

perror("open");
exit(1);

}

Question. Can you see two security issues here?

▶ mktemp() replaces XXXX with random data
▶ unique so not completely unpredictable
▶ moreover, has race condition
▶ (although better than old foobar.PID scheme)

Recommended replacement: fd = mkstemp(temp).
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Risky Banking

public class BankAccount {

private int balance;

public BankAccount(int initialBalance) {
if (initialBalance < 0)

throw new
IllegalArgumentException("initial balance must be >= 0");

balance = initialBalance;
}
}
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Risky Banking

public class BankAccount {

public void adjustBalance(int adjustment) {
balance = balance + adjustment;

}
}

Q: What’s wrong with this code?
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Risky Banking

public class BankAccount {

public void adjustBalance(int adjustment) {
balance = balance + adjustment;

}
}

A: it goes wrong in a multi-threaded context.
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Under the bonnet: Java bytecode

[dice]da: javac BankAccount.java
[dice]da: javap -c BankAccount
Compiled from "BankAccount.java"
public BankAccount1(int);
Code:

0: aload_0 // push address of this object
1: invokespecial #1 // Method java/lang/Object."<init>":()V
4: iload_1 // push first argument integer
5: ifge 18
8: new #2 // class java/lang/IllegalArgumentException
11: dup
12: ldc #3 // String initial balance must be >= 0
14: invokespecial #4 // Method java/lang/IllegalArgumentException."<init>":(Ljava/lang/String;)V
17: athrow
18: aload_0 // push address of this object
19: iload_1 // push first argument integer
20: putfield #5 // store in field balance
23: return
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public void adjustBalance(int);
Code:

0: aload_0 // push address of this object
1: aload_0 // and again
2: getfield #5 // fetch field balance
5: iload_1 // first argument: adjustment
6: iadd // top of stack = this.balance + adjustment
7: putfield #5 // store in field balance
10: return

Observe that:
balance = balance + adjustment

is implemented in these steps:
temp = balance
temp = temp + adjustment
balance = temp

where temp is a location in the (thread local) stack.
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Racy interleaving: missed update 1

Thread 1 Thread 2
======== ========

temp1 = balance
temp2 = balance

temp1 = temp1+adj1
temp2 = temp2+adj2

balance = temp1
balance = temp2

▶ Final balance loses the adjustment adj1.
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Racy interleaving: missed update 2

Thread 1 Thread 2
======== ========

temp1 = balance
temp2 = balance

temp1 = temp1+adj1
temp2 = temp2+adj2

balance = temp2
balance = temp1

▶ Final balance loses the adjustment adj2.
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Data races defined

Data Race

A data race occurs when two or more threads access a shared variable:
1. (potentially) at the same time, and
2. at least one of the accesses is a write

A data race is a race condition at the level of atomic memory accesses. It
is the root cause of many subtle programming errors involving
multi-threaded programs.
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Bugs from data races

Data races are usually accidental bugs.

▶ Lead to non-determinism
▶ Buggy behaviour may be very rare
▶ Hence difficult to reproduce: a “heisenbug”

Occasionally data races are intentional and safe:

▶ E.g., write-write races which write the same value
▶ Used knowingly e.g., in lock-free algorithms

This kind of thing is usually just for expert library code or OS kernel
developers.

Normal application developers should aim to write data race free
programs.
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Why can data races lead to security flaws?

Just as with race conditions:

▶ attacker may be able to influence thread scheduling
▶ or execute many, many times
▶ . . . to cause an erroneous calculation/inconsistent value

Additionally, racy programs may have a strange issue:

▶ circular causality loops: undefined behaviour
▶ which allows registers to have any values..
▶ prevented by making no out-of-thin-air requirement
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Java Memory Model: No Out-of-Thin-Air

Requirement: A program should not be able to read values that couldn’t
be written by that program.

Thread 1 Thread 2
---------------------------
r1 := x r2 := y
y := r1 x := r2
print r1 print r2

▶ x, y are shared memory locations, initially both 0
▶ r1 and r2 are thread-local memory locations

The only possible result should be printing two zeros because no other
value appears in or can be created by the program.

However, certain compiler/CPU optimisations would allow any value to be
output here! (Q. Why is that bad?)
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Write speculation breaks no out-of-thin-air
Thread 1 Thread 2
---------------------------
r1 := x r2 := y
y := r1 x := r2
print r1 print r2

using write speculation this can be executed as
Thread 1 Thread 2
---------------------------
y := 42
r1 := x r2 := y
if (r1 != 42) x := r2

y := r1
print r1 print r2

Now the example program could output 42!

Exercise. Give an interleaved execution showing this.
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Hardware security
2018: Meltdown and Spectre were made public.

CPU architecture bugs affecting many recent CPUs.

▶ Combine a race condition with side-channel attack
▶ result: process A steals data from process B
▶ attacks are generally undetectable

▶ Complex CPUs use software microcode to implement ISAs
▶ bugs/vulns also possible in microcode
▶ but workarounds/repairs may be possible

Since 2018 then a variety of other CPU vulnerabilities have been
published related to speculative execution, including the class of
Microarchitectural Data Sampling vulnerabilities. Microarcitectural states
reveal information about paths not taken.

Emerging areas: hardware security cost-risk trade-off assessments for
security mitigations.
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Ensuring atomicity

In general, race conditions are prevented by ensuring that compound
operations occur atomically.

▶ Examples previously with APIs for file systems
▶ If we are getting a value (file, variable, etc):
▶ broken: test, then get (TOCTOU)
▶ fix: combined API function test-and-get

Question. How can we write API functions that ensure atomicity?

▶ usually: enforce mutual exclusion
▶ or: use a transaction mechanism (has rollback)

Databases and file systems allow high throughput concurrency with
transactions. Transactional memory has been an active research topic for
a while (for both software and hardware).
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Using locks

For multi-threaded application programs, e.g., in Java

▶ use locks to ensure mutual exclusion for shared resources

Sometimes programmers are forgetful about doing this

▶ paths through code possible without locking
▶ use complicated, implicit conventions
▶ e.g., lock objects stored/removed in memory

It’s better to be carefully explicit about locking conventions.
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Safer online banking

Returning to the banking example:
protected final Object lock = new Object();

@GuardedBy("lock")
private int balance;

▶ Whenever we access balance, lock should be held
▶ GuardedBy annotation is a hint from the developer
▶ readable by other developers
▶ but also by a tool, so it can be checked

▶ Several fields might be protected by the same lock
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We can split the API into internal and external methods:
protected int readBalance() {

return balance;
}

protected void adjustBalance(int adjustment) {
balance = balance + adjustment;

}

public void credit(int amount) {
if (amount < 0)
throw new IllegalArgumentException("credit amount must be >= 0");

synchronized (lock) {
adjustBalance(amount);

}
}

But we need to be careful that the locking strategy is followed in all
subclasses.

For more, see Contemplate’s technical briefing
39 / 48
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Dynamic analysis

Dynamic analysis is in principle very expensive: monitor every access to
every memory location, and see whether the access might have raced
with a previous access from a different thread.

The Lockset algorithm simplifies this using the heuristic/expectation
that every shared variable is protected by at least one lock.

▶ For each location x, initialise C(x) be all locks
▶ For each thread t, let locks(t) be locks held by t
▶ On each access to x from thread t
▶ refine C(x) by removing locks not in locks(t)
▶ if C(x)={} then give a warning

The Eraser tool operates a tuned version of this algorithm that
distinguishes the kinds of access.
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Eraser state model for shared locations

▶ Calculate locksets for Shared and Shared-Modified
▶ Only report errors in the Shared-Modified state

Eraser implemented this using binary modification to instrument a
program dynamically.
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Static analysis for race detection

Can use a static version of the Lockset algorithm. Advantages:

▶ Spot data races that are missed by dynamic tool
▶ dynamic: may not explore paths “near enough”

▶ Doesn’t impact code execution speed
▶ dynamic: instrumentation gives significant slow-down

Disadvantages:

▶ Difficult to track locks held in data structures, etc.

The analysis can be made precise if programmers use GuardedBy
annotations to describe the locking policy. Otherwise a tool has to guess
the relevant locks and use heuristics to report discrepancies.
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Contemplate’s ThreadSafe tool
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Race conditions at Uber

“Since higher concurrency can introduce more concurrency bugs, it is only natural to
expect more data races in Go, especially when the language does not have a built-in

mechanism to avoid data races, unlike languages such as Rust.” See A Study of
Real-World Data Races in Golang, M. Chabbi and M. K. Ramanathan, PLDI 2022.
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Review Questions

Race Conditions

▶ Using an example based on Unix file handling, describe what a race
condition is, and explain how an attacker can exploit it.

Data races

▶ Describe the two necessary conditions for a program to contain a
data race.
▶ Discuss whether it is possible for a racy program to compute a

completely arbitrary value.

Program securely

▶ Describe two programming techniques that can be used to avoid
security issues with race conditions.
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