
Secure Programming Lecture 9: Secure Development

David Aspinall

Informatics Edinburgh

1 / 45



Outline
Overview

Lifecycle security touchpoints

1. Code review and repair

2. Architectural risk analysis

3. Penetration testing

4. Risk-based security testing

5. Abuse cases

6. Security requirements

7. Security operations

Summary

2 / 45



Recap

We’ve looked in detail at important vulnerability classes:

▶ overflows, stack and heap
▶ injections, command and SQL
▶ race conditions

We’ve seen secure development processes from the outside:

▶ vulnerability advisories, CVE classifications
▶ maturity model for secure software dev’t: BSIMM

It’s time to delve a bit more into secure development activities
included in BSIMM.

3 / 45



A Building Security In Process

We’ll look at a:

Secure Software Development Lifecycle (SSDLC)

due to Gary McGraw and described in his 2006 book Software Security:
Building Security In.

4 / 45

http://www.amazon.co.uk/Software-Security-Building-In-Addison-Wesley/dp/0321356705
http://www.amazon.co.uk/Software-Security-Building-In-Addison-Wesley/dp/0321356705


A Building Security In Process

Work by McGraw and others has been combined in the best practices
called Building Security In.

It is used in the BSIMM survey mentioned earlier:

▶ BSIMM is proposed as a Maturity Model for real-world best practices
in software-producing companies

This has been promoted by the US-CERT and in Carnegie Mellon
University’s Software Engineering Institute:

▶ Cybersecurity Engineering

Lately there is an emphasis on a broader scope, with CMU/SEI developing a Software
Assurance Framework which covers more of the application lifecycle, emphasising design

flaws and supply chains.

5 / 45

https://www.bsimm.com
https://www.us-cert.gov/
https://www.sei.cmu.edu/our-work/cybersecurity-engineering/index.cfm


Outline
Overview

Lifecycle security touchpoints

1. Code review and repair

2. Architectural risk analysis

3. Penetration testing

4. Risk-based security testing

5. Abuse cases

6. Security requirements

7. Security operations

Summary

6 / 45



McGraw’s “Three Pillars”

I: Applied Risk Management

Identify, rank, track risks. Threat modelling helps find security risks.

II: Software Security Touchpoints

Seven lifecycle stages for building-in security-related activities.

III: Knowledge

Applying previous or new knowledge, e.g., programming guidelines and
rules, or known exploits and attack patterns.

To avoid debates over specific development processes, BSI was based on
best practice activities seen in multiple organisations.

7 / 45



Touchpoints: Security activities during development

How should secure development practices be incorporated into traditional
software development?

0. treat security separately as a new activity (wrong)
1. invent a new, security-aware process (another fad)
2. run security activities alongside traditional

In business, “touchpoints” are places in a product/sales lifecycle where a
business connects to its customers.

McGraw adapts this to suggest “touchpoints” in software development
where security activities should interact with regular development
processes.

8 / 45



Security activities during lifecycle
McGraw identified 7 touchpoint activity areas, connecting to software
development artefacts. In lifecycle order:

▶ Abuse cases (in requirements)
▶ Security requirements (in requirements)
▶ Risk analysis (in requirements, design, and test)
▶ Risk-based security tests (in test planning)
▶ Code review (in coding)
▶ Penetration testing (in testing and deployment)
▶ Security operations (during deployment)

His process modifies one adopted by Microsoft after the infamous
Trustworthy computing Gates Memo in 2002.

Exercise. For each touchpoint (detailed shortly), identify the
development artefact(s) it concerns.

9 / 45

https://www.wired.com/2002/01/bill-gates-trustworthy-computing/


Touchpoints in the software development lifecycle

The numbers are a ranking in order of effectiveness.

10 / 45



Outline
Overview

Lifecycle security touchpoints

1. Code review and repair

2. Architectural risk analysis

3. Penetration testing

4. Risk-based security testing

5. Abuse cases

6. Security requirements

7. Security operations

Summary

11 / 45



1. Code review

Most effective touchpoint: eliminate problems at source.

Evidence since 1970s shows bugs are orders of magnitude cheaper to fix
during coding than later in the lifecycle.

Code QA processes aren’t as widely deployed as you might imagine, but
things are perhaps improving. (Q. Why?)

12 / 45



Code review types

▶ Manual code review
▶ can find subtle, unusual problems
▶ an onerous task, especially for large code bases
▶ but adopted dev cycle in some agile processes (e.g., Google)

▶ Automatic static analysis
▶ increasingly sophisticated tools automate scanning
▶ very useful but can never understand code perfectly
▶ and may need human configuration, interpretation

Especially effective for simple bugs such as overflows.

13 / 45



Outline
Overview

Lifecycle security touchpoints

1. Code review and repair

2. Architectural risk analysis

3. Penetration testing

4. Risk-based security testing

5. Abuse cases

6. Security requirements

7. Security operations

Summary

14 / 45



2. Architectural risk analysis

15 / 45



Design flaws

Design flaws are not obvious from staring at code; they need to be
identified in the design phase.

Architectural risk analysis considers risk during requirements, design, and
testing:

▶ the security threats that attackers pose to assets
▶ vulnerabilities that allow threats to be realised
▶ the impact and probability of an attack
▶ hence the risk, as risk = probability × impact
▶ countermeasures that may be put into place

Example: poor protection of secret keys; risk is deemed high that attacker
can read key stored on the filesystem and then steal encrypted document.
A countermeasure is to keep encryption keys on dedicated USB tokens.

16 / 45



Risk analysis in general

▶ Several approaches:
▶ financial loss oriented (cost versus damage)
▶ mathematical (or pseudo-mathematical) risk ratings
▶ qualitative methods using previous knowledge

▶ If possible, should use specialist non-developers
▶ requires understanding business impact
▶ perhaps legal and regulatory framework
▶ devs often strongly opinionated, fixed assumptions

The (modern) Board-level view:

▶ a Chief Risk Officer manages risk across organisation
▶ balance cyber security with other types of risk

17 / 45



Common steps in risk analysis

1. Study system (specs, design docs, code, tests)
2. Identify threats and attackers types/routes
3. List possible vulnerabilities in the software
4. Understand planned security controls (& risks\dots)
5. Map attack scenarios (routes to exploit)
6. Perform impact analysis
7. Using likelihood estimates, rank risks
8. Recommend countermeasures in priority/cost order

Particular risk analysis methods refine these.

In steps 2 and 3, may use checklists of threat types and previously known
vulnerabilities; also general “goodness” guidelines.

18 / 45



Security design guidelines

Saltzer and Schroeder (1975)’s classic principles are a good example of
high-level design guidelines:

1. Economy of mechanism: keep it simple, stupid
2. Fail-safe defaults: e.g., no single point of failure
3. Complete mediation: check everything, every time
4. Open design: assume attackers get the source & spec
5. Separation of privilege: use multiple conditions
6. Least privilege: no more privilege than needed
7. Least common mechanism: beware shared resources
8. Psychological acceptability: are security ops usable?

Exercise. If you haven’t studied these already, you should review them
in detail.

19 / 45



Microsoft STRIDE approach

STRIDE is mnemonic for categories of threats in Microsoft’s method:

▶ Spoofing: attacker pretends to be someone else
▶ Tampering: attacker alters data or settings
▶ Repudiation: user can deny making attack
▶ Information disclosure: loss of personal info
▶ Denial of service: preventing proper site operation
▶ Elevation of privilege: user gains power of root user

Exercise. Recall the definitions of the classic CIA security properties
(confidentiality, integrity, availability). Explain which properties each
threat type attacks.

20 / 45



The STRIDE approach

STRIDE uses Data Flow Diagrams to chase data through a system.

▶ Consider each data flow, manipulation, or storage:
▶ Are there vulnerabilities of type S,T,R,I,D,E?
▶ Are there routes to attack?

▶ Design mitigations (countermeasures)

STRIDE was designed as a developer-friendly mechanism

▶ devs may not know end user’s risk tolerance
▶ so de-emphasises risk assessment, business impact

See MSDN magazine, Nov 2006.

21 / 45

https://learn.microsoft.com/en-us/archive/msdn-magazine/2006/november/uncover-security-design-flaws-using-the-stride-approach


General risk reduction mechanisms

Besides understanding specific threats, we may use general
risk-reduction approaches:

▶ Design to allow updates, particularly security patches
▶ Only use 3rd party components which have been security tested
▶ Only use approved/vetted up-to-date tools (compilers, IDEs etc.)

Question. Can you think of any other general recommendations to
reduce risk?

Question. Are there dangers with general risk reduction approaches?

22 / 45



Outline
Overview

Lifecycle security touchpoints

1. Code review and repair

2. Architectural risk analysis

3. Penetration testing

4. Risk-based security testing

5. Abuse cases

6. Security requirements

7. Security operations

Summary

23 / 45



3. Penetration testing
Current dominant methodology (alongside bolt-on protection measures,
outside the lifecycle). Effective because it considers a program in final
environment.

▶ Finds real problems
▶ demonstrable exploits easily motivates repair costs
▶ process “feels” good: something gets “better”

▶ Drawback: no accurate sense of coverage
▶ ready made pen testing tools cover only easy bugs
▶ system-specific architecture and controls ignored

Beware Dijkstra’s famous remark: Testing shows the presence, not the
absence of bugs. Just running some standard pen-testing tools is a very
minimal test.

Example: by feeding data to form elements, a browser plugin pen testing
tool uncovers XSS vulnerabilities.

24 / 45



Bad use of pen testing

▶ Pen testing by external consultants is limited
▶ they may know tools but not system being tested
▶ judgements about code limited (esp if black-box)

▶ Developers only patch to fix problems they’re told about
▶ Other patches may not be applied
▶ Patches can introduce new problems
▶ Patches often only fix symptom, not root cause

▶ Black box pen testing too limited
▶ Modern professional pen testing uses source

25 / 45



Good use of pen testing

McGraw advocates using pen testing:

▶ At the unit level, earlier in development:
▶ automatic fault-injection with fuzzing tools

▶ Before deployment, as a last check
▶ not a first check for security, after deployment!
▶ risk-based, focus on configuration and environment

▶ Metrics-driven: tracking problem reduction
▶ not imagining zero=perfect security
▶ use exploits as regression tests

▶ For repairing software, not deploying work-arounds

26 / 45



Outline
Overview

Lifecycle security touchpoints

1. Code review and repair

2. Architectural risk analysis

3. Penetration testing

4. Risk-based security testing

5. Abuse cases

6. Security requirements

7. Security operations

Summary

27 / 45



4. Security testing

Security testing complements QA processes which ensure main functional
requirements are error free.

▶ Test security functionality
▶ test security functions with standard methods
▶ consider them as part of main requirements
▶ write test cases for encryption key update

▶ Test security based on attack patterns or identified abuse
cases
▶ apply risk analysis to prioritize
▶ consider attack patterns
▶ test for injection vulns in environment vars

28 / 45



Traditional testing vs security testing

Traditional testing

Testers check a reasonably clear list of desired behaviours.

“The system shall. . . [do X, Y, and Z]”
Explicit functional requirements * check use cases, operate as expected
* customer can add/remove items from cart Sometimes explicit
non-functional requirements * check usability, performance * user
experience (UX) is pleasing * updating cart takes at most 5 seconds

29 / 45



Traditional testing vs security testing

Security testing

Testers check an unclear list of undesirable behaviours are absent.
“The system shall not. . . ”

Rarely explicit non-functional non-requirements * check undefined,
unexpected behaviours impossible * check safe recovery under abnormal
conditions * a negative size input doesn’t exhaust memory * a web
server crash doesn’t display debug info

30 / 45



A strategy for security testing

1. Understand the attack surface by enumerating:
▶ program inputs
▶ environment dependencies: hardware, software, people, . . .

2. Use risk analysis outputs to prioritize components
▶ often highest: code accessed by anonymous, remote users

3. Work through attack patterns using fault-injection:
▶ use manual input, fuzzers or proxies

4. Check for security design errors
▶ privacy of network traffic
▶ controls on storage of data, ACLs
▶ authentication
▶ random number generation

31 / 45



Automating security tests

Just as with functional testing, we can benefit from building up suites of
automated security tests.

1. Think like an attacker
2. Design test suites to attempt malicious exploits
3. Knowing system, try to violate specifications or assumptions

This goes beyond random fuzz testing approaches.

Specially designed whitebox fuzz testing is successful at finding
security flaws (or, generating exploits).

One approach: use dynamic test generation, using symbolic execution to generate inputs
that reach error conditions (e.g., buffer overflow).

32 / 45



Outline
Overview

Lifecycle security touchpoints

1. Code review and repair

2. Architectural risk analysis

3. Penetration testing

4. Risk-based security testing

5. Abuse cases

6. Security requirements

7. Security operations

Summary

33 / 45



5. Abuse cases

Idea: describe the desired behaviour of the system under different kinds
of abuse/misuse.

▶ Work through attack patterns, e.g.
▶ illegal/oversized input

▶ Examine assumptions made, e.g.
▶ interface protects access to plain-text data
▶ cookies returned to server as they were sent

▶ Consider unexpected events, e.g.
▶ out of memory error, disconnection of server

Specific detail should be filled out as for a use case.

Related idea: anti-requirements.

34 / 45



Outline
Overview

Lifecycle security touchpoints

1. Code review and repair

2. Architectural risk analysis

3. Penetration testing

4. Risk-based security testing

5. Abuse cases

6. Security requirements

7. Security operations

Summary

35 / 45



6. Security requirements

Security needs should be explicitly considered at the requirements stage.

▶ Functional security requirements, e.g.
▶ use cryptography to protect sensitive stored data
▶ provide an audit trail for all financial transactions
▶ only gather essential data (privacy)

▶ Emergent security requirements, e.g.
▶ recover on ill-formed input (avoid DoS)
▶ minimise side channels (avoid confidentiality leaks)

36 / 45



Outline
Overview

Lifecycle security touchpoints

1. Code review and repair

2. Architectural risk analysis

3. Penetration testing

4. Risk-based security testing

5. Abuse cases

6. Security requirements

7. Security operations

Summary

37 / 45



7. Security operations

Security during operations means managing the security of the deployed
software.

Traditionally this has been the domain of information security
professionals.

The idea of this touchpoint is to combine expertise of infosecs and devs.

This has become more critical recently with the rise of devops.

38 / 45



Information security professionals

Expert in:

▶ Incident handling, proactive threat monitoring
▶ Range and mechanisms of vulnerabilities, cross systems
▶ Understanding and deploying desirable patches
▶ Configuring firewalls, IDS, virus detectors, etc

But are rarely software experts.

Taking part in the development process can feed back knowledge from
attacks, or join in security testing.

Infosec people understand pentesting from the outside and less from
inside. E.g., network security scanners may be more effective than
application scanners.

39 / 45



Coders

Expert in:

▶ Software design, application architecture
▶ Programming, often single languages
▶ Build systems, overnight testing

But coders currently may not understand security in-the-wild.

Coders focus on the main product, easy to neglect the deployment
environment. E.g., VM host environment may be easiest attack vector.

40 / 45



Outline
Overview

Lifecycle security touchpoints

1. Code review and repair

2. Architectural risk analysis

3. Penetration testing

4. Risk-based security testing

5. Abuse cases

6. Security requirements

7. Security operations

Summary

41 / 45



Summary

This lecture outlined some SSDLC activities.

The descriptions were quite high-level. BSIMM documents over 100
activities used in real-world SSDLCs, organised into 4 domains:
Governance, Intelligence, Development and Deployment.

Exercise. For each of the touchpoints, find specific documented
examples of use in a development process. McGraw’s book has some, but
there are other sources.

Exercise. Practice thinking about the touchpoints by constructing
scenarios. Consider the development of a particular piece of software or
a system. Imagine what some of the touchpoints might uncover or
recommend.

42 / 45

http://www.bsimm.com


Review questions

▶ Describe 5 secure development lifecycle activities and the
points in which they would be used in a compressed 4-stage agile
development method (use case, design, code, test).

▶ What kinds of security problem is code review better at finding
compared with architectural risk analysis?

▶ Why is risk analysis difficult to do at the coding level?

▶ What is the main drawback of penetration testing, especially when it
is applied as an absolute measure of security of a software system?

43 / 45



References and credits

Material in this lecture is adapted from

▶ Software Security: Building Security In, by Gary McGraw.
Addison-Wesley, 2006.
▶ The Art of Software Security Testing, by Wysopal, Nelson, Dai Zovi

and Dustin. Addison-Wesley, 2007.
▶ Build Security In, the initiative of US-CERT and now re-branded as

Secure by Design by the US Cyber Defense Agency CISA, see
https://www.cisa.gov/securebydesign.

44 / 45

http://www.amazon.co.uk/Software-Security-Building-In-Addison-Wesley/dp/0321356705
http://www.amazon.co.uk/The-Art-Software-Security-Testing/dp/0321304861
https://www.cisa.gov/securebydesign


Recommended reading

▶ Microsoft’s STRIDE approach originally documented in the MSDN
magazine, Nov 2006. See the Wikipedia page.

▶ Saltzer and Shroeder. The Protection of Information in Computer
Systems, 1975. Web version available at MIT Proceedings of IEEE
version at IEEE Explore.

▶ The DevOps revolution lets developers deploy directly and update
rapidly; DevSecOps brings security into the CI/CD process, as a mix
of automated security testing, analysis and vulnerability tracking.
See e.g., Microsoft’s advice.

▶ The CyBoK Secure Software Lifecycle Knowledge Area KA gives an
overview of the topic area and plenty of pointers.

45 / 45

https://en.wikipedia.org/wiki/STRIDE_model
http://web.mit.edu/Saltzer/www/publications/protection/
https://doi.org/10.1109/CSIT.1975.6498831
https://www.microsoft.com/en-us/securityengineering/devsecops
https://www.cybok.org
https://www.cybok.org/media/downloads/Secure_Software_Lifecycle_v1.0.2.pdf

	Overview
	Lifecycle security touchpoints
	1. Code review and repair
	2. Architectural risk analysis
	3. Penetration testing
	4. Risk-based security testing
	5. Abuse cases
	6. Security requirements
	7. Security operations

	Summary

