
Secure Programming Lecture 10: Web Application
Security I (OWASP, HTTP)

David Aspinall

Informatics @ Edinburgh

1 / 48

Outline

Introduction

OWASP Top 10

Web essential basics

Programming web applications

Fundamentals: HTTP

Summary

2 / 48

Roadmap

In labs and the next few lectures we’ll look at web application security
including

▶ some of the main weakness categories
▶ the vulnerabilities that arise,
▶ and better programming to avoid them.

To understand things, we’ll start from some necessary basics of web
technology.

Before that, we’ll examine a community-driven list of common
weaknesses.

3 / 48

Outline

Introduction

OWASP Top 10

Web essential basics

Programming web applications

Fundamentals: HTTP

Summary

4 / 48

OWASP

The Open Web Application Security Project is a charity started in 2001, to
promote mechanisms for securing web apps in a non-proprietary way.

They have local chapters worldwide; the Scotland chapter sometimes
meets in Appleton Tower.

Like CERT and Mitre, OWASP produce taxonomies of weaknesses and
coding guidelines.

Their most well known output is the OWASP Top 10 list of the most
critical weaknesses in web applications.

5 / 48

https://www.owasp.org/
https://www.owasp.org/index.php/Scotland
https://www.cert.org/secure-coding/
https://cwe.mitre.org
https://owasp.org/Top10/

OWASP Top 10

6 / 48

OWASP Top 10 list 2021
▶ A1 Broken Access Control
▶ A2 Cryptographic Failures
▶ A3 Injection
▶ A4 Insecure Design
▶ A5 Security Misconfiguration
▶ A6 Vulnerable and Outdated Components
▶ A7 Identification and Authentication Failures
▶ A8 Software and Data Integrity Failures
▶ A9 Security Logging and Monitoring Failures
▶ A10 Server-Side Request Forgery

The list is compiled using data for found problems but also from a
community survey, to include newer, emerging problem types. Ranking
uses CVSS scores for exploitability and impact.

Primarily for awareness.

See https://owasp.org/Top10
7 / 48

https://owasp.org/Top10

2021 OWASP Top 10 overview

We’ll take a quick look at the 2021 OWASP Top 10 to define each of them
at a high level:

▶ Definition what the category means
▶ Causes the general causes of the problem
▶ Effects the typical kind of effects seen

In more detail, each OWASP weakness is mapped onto more specific
CWEs. We’ll look at examples later.

Question. What is a risk if we focus only on the OWASP Top 10?

8 / 48

A1 Broken Access Control

Broken Access Control

Users can act outside their intended permissions.

▶ Causes: access control policy is wrong or can be bypassed.
▶ Effects: information disclosure, modification, destruction.

9 / 48

A2 Cryptographic Failures

Cryptographic Failures

Lack of cryptographic protection or bad use of cryptography.

▶ Causes: failure to protect data in transit or at rest, use of deprecated
or buggy methods.
▶ Effects: data disclosure.

10 / 48

A3 Injection

Injection

User-supplied data is not validated, filtered or sanitized.

▶ Causes: using unsafe APIs, manually assembled commands or
queries, lack of defensive resource controls. Includes Cross-Site
Scripting (XSS).
▶ Effect: data disclosure and modification, remote code execution.

11 / 48

A4 Insecure Design

Insecure Design

Missing or ineffective design of security controls.

▶ Causes: architectural weaknesses arising from misunderstanding
threats, using insecure design patterns.
▶ Effects: immediate lack of security, enabling other attacks.

12 / 48

A5 Security Misconfiguration

Security Misconfiguration

Errors in configuration of services or web functions.

▶ Causes: insecure-by-default values unchanged; application stack
configurations not secured; degraded security enabled.
▶ Effects: attacks are easier than they should be.

13 / 48

A6 Vulnerable and Outdated Components

Vulnerable and Outdated Components

Out of data and unpatched components, client or server side, including
nested app dependencies, engine, database, OS, C libraries.

▶ Causes: starting from old versions or not implementing updates; no
regular scanning; misconfigurations.
▶ Effects: opens vulnerabilities to well known or easily discoverable

exploits.

14 / 48

A7 Identification and Authentication Failures

Identification and Authentication Failures

User or machine identities are not properly established, or authentication
mechanisms are missing or weak.

▶ Causes: broken or missing certificate or SSO checks;
mismanagement of session IDs or other credentials; allowing
automated attacks.
▶ Effects: attackers can access user accounts and information,

perhaps leading to elevation-of-privilege.

15 / 48

A8 Software and Data Integrity Failures

Software and Data Integrity Failures

Lack of integrity checks on critical software or data downloads and
updates, or extended dependencies outwith framework controls.

▶ Causes: unsigned software or unchecked deserialised data;
untrustworthy software repositories; compromised build/deployment
machines.
▶ Effects: opens attack surface for adjacent malware or tampering

with application operation.

16 / 48

A9 Security Logging and Monitoring Failures

Security Logging and Monitoring Failures

Lack, misconfiguration or insufficiency of logging, missing important
information or logging without output filtering.

▶ Causes: security-relevant events such as successful or failed logins
are not logged; messages are inadequate; no support for realtime
monitoring and response.
▶ Effects: long-lived compromises can go unnoticed; mass data

breaches and denial-of-service made easier for attacker and harder to
diagnose.

17 / 48

A10 Server-Side Request Forgery

Server-Side Request Forgery (SSRF)

A web-application server fetches an internal or external resource without
proper authorization or validation.

▶ Causes: web application allows users to add links to other places or
content; URLs can be crafted to make malicious requests or for
reconnaissance.
▶ Effects: attacker learns about web app or server’s internal network

architecture, causes actions on other servers or accesses sensitive
data.

18 / 48

Changes from 2017 to 2021

19 / 48

Outline

Introduction

OWASP Top 10

Web essential basics

Programming web applications

Fundamentals: HTTP

Summary

20 / 48

Outline

Introduction

OWASP Top 10

Web essential basics

Programming web applications

Fundamentals: HTTP

Summary

21 / 48

The technology stack in modern web applications

▶ HTTP, URLs, cookies

▶ XML, JavaScript, JSON, REST APIs

▶ Authentication and authorization (OAuth, OpenID, SAML, . . .)

▶ SPA or PWA Frameworks

▶ Client-side browser APIs, local data stores

▶ Web servers (Apache, nginx, Node.js, . . .)

▶ Server-side databases (MySQL, MongoDB, . . .)

▶ Deployment mechanisms, CDNs, load balancing

Flaws in design or implementation of any part can lead to security
vulnerabilities!

22 / 48

Programming apps: a myriad of ways!
▶ Low-code and no-code methods (Retool, LANSA, Budibase, . . .)

▶ Serverless cloud functions (AWS Lambda, GCF, Heroku, . . .)

▶ Microservice architecture (Node.js, Spring Boot, . . .)

▶ “Traditional” Web Application Framework (Rails, Django, . . .)

▶ Content Management System (Joomla, Drupal, . . .)

▶ Wiki (MediaWiki, Confluence, . . .)

▶ Blog (Wordpress, . . .)

Flaws in design or implementation of any low-code platform, CMS, blog,
app framework, ec can lead to security vulnerabilities!

Exercise. An advocate tells you "Low-code means Low risk!" Do you
agree?

23 / 48

Web application frameworks

Graphic from Distinguished.io.

24 / 48

Web application frameworks
Choose a programming language, choose a web framework, choose
security mechanism. . .

Language Choices Security provision methods

Java 23 >10, builtin/plugin: Spring, OpenID, RBAC
PHP 17 per-framework; ACLs, RBAC, OpenID
Python 17 per-framework
JavaScript 5 limited (close links to client-side)

Wikipedia’s handy Comparison of server-side web frameworks which lists over 10
languages, almost 100 frameworks.

Question. How would you choose which framework to use? How would
you know how to fix security issues for someone else’s choice?

25 / 48

https://en.wikipedia.org/wiki/Comparison_of_server-side_web_frameworks

What’s underneath all this?
Knowing what is happening at the bottom of the stack is important to
understand fundamentally how web security provisions work (or don’t).

We will study enough of the lower layers to see many design and
implementation issues behind the OWASP Top 10.

▶ This should help when you want to understand higher-level problems
▶ It also useful to learn how the bottom layers work to study the detail

of web exploits as they have evolved.

(Covering the full stack is beyond what we could manage in this course.)

Similarly, we examined assembler code and CPU execution for C applications, to
understand what was really going on “under the bonnet” for how low-level code attacks
work.

26 / 48

Outline

Introduction

OWASP Top 10

Web essential basics

Programming web applications

Fundamentals: HTTP

Summary

27 / 48

HTTP

HTTP = Hyper Text Transfer Protocol

Client-server protocol for web browsing and more (Q. Why?)

▶ Specifies messages exchanged
▶ HTTP/1.1 specified in RFC 2616
▶ HTTP/2 in RFC 7540 (mainly efficiency)
▶ HTTP/3 RFC9114 (adds QUIC)

▶ Messages are text based, in lines (Unix: CR+LF)
▶ Stateless client-side design
▶ quickly became a problem, hence cookies

▶ Note: HTTP is entirely separate from HTML!
▶ HTTP headers not HTML <HEAD>
▶ HTML is text format for web content

HTTP is based around 4 request methods: GET, POST, PUT, and DELETE.

28 / 48

http://tools.ietf.org/html/rfc2616
http://tools.ietf.org/html/rfc7540
https://www.rfc-editor.org/rfc/rfc9114.html

HTTP communication

HTTP is a client-server protocol.

▶ Client initiates TCP connection, usually
▶ port 80 for plain text HTTP
▶ port 443 for HTTP over TLS (HTTPS)

▶ Client sends HTTP request over connection
▶ Server responds
▶ may close connection (HTTP 1.0 default)
▶ or keep it persistent for a wee while

▶ Server never initiates a connection
▶ except in newer HTML5 WebSockets
▶ WebSockets allow low-latency interactivity

▶ In HTTP/2 Server Push can pre-emptively send additional responses
▶ Idea: anticipate subsequent requests
▶ semantic equivalence but caching behaviour subtle

29 / 48

http://tools.ietf.org/html/rfc6455

HTTP GET message (simplified)

GET / HTTP/1.1
Host: www.bbc.co.uk
User-Agent: Mozilla/5.0
Accept: text/html
Accept-Language: en-US,en;q=0.5

30 / 48

HTTP GET message (less simplified)

GET / HTTP/1.1
Host: www.bbc.co.uk
User-Agent: Mozilla/5.0 (Macintosh; Intel Mac OS X 10.9; rv:27.0) Gecko/20100101 Firefox/27.0
Accept: text/html,application/xhtml+xml,application/xml;q=0.9,*/*;q=0.8
Accept-Language: en-US,en;q=0.5
Accept-Encoding: gzip, deflate
DNT: 1
Connection: keep-alive
Pragma: no-cache
Cache-Control: no-cache

31 / 48

HTTP Response (simplified)

HTTP/1.1 200 OK
Server: Apache
Content-Type: text/html; charset=UTF-8
Date: Wed, 19 Feb 2014 14:30:42 GMT
Connection: keep-alive

<!DOCTYPE html> <html lang="en-GB" > <head> < !-- Barlesque 2.60.1 -->
<meta http-equiv="Content-Type" content="text/html; charset=UTF-8" />
<meta name="description" content="Explore the BBC, for latest news,
sport and weather, TV & radio schedules and highlights, with
nature, food, comedy, children's programmes and much more" />
...

32 / 48

HTTP Response (less simplified)
HTTP/1.1 200 OK
Server: Apache
Etag: "c8f621dd5455eb03a12b0ad413ab566f"
Content-Type: text/html
Transfer-Encoding: chunked
Date: Wed, 19 Feb 2014 20:12:34 GMT
Connection: keep-alive
Set-Cookie: BBC-UID=a583d...4929Mozilla/5.0; expires=Sun, 19-Feb-18 20:12:34 GMT; path=/; domain=.bbc.co.uk
X-Cache-Action: HIT
X-Cache-Hits: 574
X-Cache-Age: 50
Cache-Control: private, max-age=0, must-revalidate
X-LB-NoCache: true
Vary: X-CDN

d1c
<!DOCTYPE html>
...

Note: cache fingerprint; chunked transfer; cookie; cache directives.

33 / 48

Client != Browser

[dice]da: telnet www.bbc.co.uk 80
Trying 212.58.244.71...
Connected to www.bbc.net.uk.
Escape character is '^]'.
GET / HTTP/1.0
Host: www.bbc.co.uk
Accept: text/html, text/plain, image/*
Accept-Language: en
User-Agent: Handwritten in my terminal

HTTP/1.1 200 OK
Server: Apache
Content-Type: text/html
Date: Wed, 19 Feb 2014 14:26:00 GMT
...

34 / 48

Client != Browser

[dice]da: telnet www.bbc.co.uk 80
Trying 212.58.244.71...
Connected to www.bbc.net.uk.
Escape character is '^]'.
GET / HTTP/1.0
Host: www.bbc.co.uk
Accept: text/html, text/plain, image/*
Accept-Language: en
User-Agent: Handwritten in my terminal

HTTP/1.1 200 OK
Server: Apache
Content-Type: text/html
Date: Wed, 19 Feb 2014 14:26:00 GMT
...

34 / 48

Client != Browser

Client-side security pretty much doesn’t exist

▶ Any program can conduct HTTP(S) communications
▶ . . . URLs can be constructed arbitrarily
▶ . . . POST forms content also
▶ In server-side context, there are no input validation guarantees

despite any client-side code.

Client side security could perhaps be provided in specific settings using secure
attestation methods (using trusted computing and/or cryptography) but these can be

heavyweight or require hardware roots of trust. Meanwhile, web servers are increasingly
protected by other checks and layers which reject requests that are out-of-the-ordinary.

35 / 48

Referer header

GET /news/ HTTP/1.1
Host: www.ed.ac.uk
User-Agent: Mozilla/5.0 (Macintosh; Intel Mac OS X 10.9; rv:27.0) Gecko/20100101 Firefox/27.0
Accept: text/html,application/xhtml+xml,application/xml;q=0.9,*/*;q=0.8
Accept-Language: en-US,en;q=0.5
Accept-Encoding: gzip, deflate
DNT: 1
Referer: http://www.ed.ac.uk/home
Connection: keep-alive

36 / 48

Referer header

Question. What immediate security issue arises from this header?

37 / 48

Referer header

38 / 48

Referer header may be used by web apps

GET /loggedin/secretfile.html HTTP/1.1
Host: www.mycompany.com
Accept: text/html,application/xhtml+xml,application/xml;q=0.9,*/*;q=0.8
Accept-Language: en-US,en;q=0.5
Accept-Encoding: gzip, deflate
DNT: 1
Referer: http://www.mycompany.com/loggedin/

Don’t rely on Referer header for access decisions!

▶ Flawed assumption made in bad web apps:
user navigated to a logged in area, therefore they must be logged in
▶ But Referer is from client, cannot be trusted!
▶ Also risky because of TOCTOU
▶ and confuses authentication with authorization

39 / 48

Inputs via GET Request

http://www.shop.com/products.asp?name=Dining+Chair&material=Wood

▶ Input encoded into parameters in URL
▶ Bad for several reasons:
▶ SEO optimisation: URL not canonical
▶ cache behaviour (although not relevant for login)

Question. What’s another reason this format is bad?

40 / 48

Inputs via GET Request

http://someplace.com/login.php?username=jdoe&password=BritneySpears

▶ URL above is visible in browser navigation bar!

41 / 48

POST Request (simplified)

POST /login.php HTTP/1.0
Host: www.someplace.example
Pragma: no-cache

Cache-Control: no-cache
User-Agent: Mozilla/5.0 (X11; U; Linux i686; en-US; rv:1.5a)
Referer: http://www.someplace.example/login.php
Content-type: application/x-www-form-urlencoded
Content-length: 49

username=jdoe&password=BritneySpears

▶ URL in browser: http://www.someplace.example/login.php

42 / 48

GET versus POST

▶ GET is a request for information
▶ can be (transparently) resent by browsers
▶ also may be cached, bookmarked, kept in history

▶ POST is an update providing information
▶ gives impression that input is hidden
▶ browsers may treat differently

▶ neither provide confidentiality without HTTPS!
▶ plain text, can be sniffed
▶ if HTTPS TLS encryption is stripped, can be read

▶ in practice, GET often changes state somewhere
▶ user searches for something, gets recorded
▶ user has navigated somewhere, gets recorded

43 / 48

When to use POST instead of GET

▶ For sensitive data, always use POST
▶ helps with confidentiality but not enough alone

▶ For large data, use POST
▶ URLs should be short (e.g., <=2000 chars)
▶ longer URLs cause problems in some software

▶ For actions with (major) side effects use POST
▶ mainly correctness; many early web apps wrong

These are general guidelines. There are sometimes more complex technical reasons to
prefer GET.

44 / 48

Outline

Introduction

OWASP Top 10

Web essential basics

Programming web applications

Fundamentals: HTTP

Summary

45 / 48

Review questions

OWASP Top 10

▶ What is the purpose of OWASP and its Top 10 list?
▶ Give a couple of examples of items in the OWASP Top 10.

HTTP Headers

▶ Describe three possible vulnerabilities for a web application posed by
an attacker who fabricates HTTP headers rather than using the web
app running via a reliable browser.

▶ Explain the reasons for using POST rather than GET. What security
guarantees does it provide?

46 / 48

References and credits

Some examples were adapted from:

▶ Innocent Code: a security wake-up call for web programmers by
Sverre H. Huseby, Wiley, 2004.

as well as the named RFCs and the OWASP resources (follow links in the
slides). A more recent book is:

▶ Web Application Security: Exploitation and Countermeasures for
Modern Web Applications by Andrew Hoffman. O’Reilly, 2nd Ed, 2024.

although this book assumes some knowledge of web programming.

47 / 48

http://www.amazon.co.uk/Innocent-Code-Security-wake-up-Programmers/dp/0470857447
https://www.amazon.co.uk/Web-Application-Security-Exploitation-Countermeasures/dp/1098143930
https://www.amazon.co.uk/Web-Application-Security-Exploitation-Countermeasures/dp/1098143930

Recommended and further reading

▶ The OWASP Top 10

The pages connect to many useful resources. OWASP has recorded some
vulnerabilities which may have not otherwise been given CVE numbers.

If there is a single server or owning site, web app vulnerabilities may be
short-lived, repaired quickly and not disclosed by site owners.

▶ Mozilla’s MDN pages have lots of useful guides and reference
material, for example, for Web APIs.
▶ Their Security on the Web page is a handy index linking security

development needs to specific feature guides.

48 / 48

https://owasp.org/www-project-top-ten/
https://developer.mozilla.org
https://developer.mozilla.org/en-US/docs/Web/Security

	Introduction
	OWASP Top 10
	Web essential basics
	Programming web applications
	Fundamentals: HTTP

	Summary

