
Secure Programming Lecture 12: Web Application
Security III

David Aspinall

Informatics @ Edinburgh

1 / 53



Outline
Overview

Essential Basics: Cookies & Sessions

Cookies and the law

Cookies technically

Session hijacking

Cross-site Request Forgery (CSRF)

Unvalidated Redirects

XML External Entities (XXE)

Insecure deserialization

Summary

2 / 53



Roadmap

We’re continuing to look at security in web application programming.

Some basics:

▶ Cookies and sessions

Some technical attacks:

▶ Session hijacking
▶ CSRF
▶ Unvalidated redirects
▶ XML External Entities
▶ Insecure deserialization

3 / 53



Outline
Overview

Essential Basics: Cookies & Sessions

Cookies and the law

Cookies technically

Session hijacking

Cross-site Request Forgery (CSRF)

Unvalidated Redirects

XML External Entities (XXE)

Insecure deserialization

Summary

4 / 53



Cookies: state in a stateless world
Recall that HTTP is a stateless protocol.

▶ in principle, HTTP response depends only on request

But saving state is highly desirable between requests:

▶ remember user’s preferences, navigation point, . . .
▶ web applications: user logged in for a session

However, also the less desirable:

▶ advertising network tracking ids
▶ may be shared between websites
▶ thus can profile user browsing behaviour
▶ hence compromise privacy
▶ also risk of theft
▶ if browser/machine compromised, or
▶ if cookies passed in clear

5 / 53



Outline
Overview

Essential Basics: Cookies & Sessions

Cookies and the law

Cookies technically

Session hijacking

Cross-site Request Forgery (CSRF)

Unvalidated Redirects

XML External Entities (XXE)

Insecure deserialization

Summary

6 / 53



Cookies and the law (pre 2018)

This was a cheeky infographic claiming in 2013 “the stupid cookie law is dead at last”.

7 / 53



Cookies and the e-Privacy law (2003-)

The Privacy and Electronic Communications Regulations (EC Directive)
apply in Europe and (currently) UK as well. These cover the storage of
cookies particularly. (the GDPR and UK DPA apply to processing of data).

PECR Regulations 2003, Regulation 6 (paraphrased)

A person shall not use an electronic communications network to store
information, or to gain access to information stored, in the terminal
equipment of a subscriber or user unless:
▶ The purpose is explained and the user can refuse;
▶ The only reason is to enable a communication;
▶ or, storage or access is strictly necessary to provide a service

requested by the user.
Links: UK Legislation, UK ICO advice.

8 / 53

https://www.legislation.gov.uk/uksi/2003/2426
https://ico.org.uk/for-organisations/direct-marketing-and-privacy-and-electronic-communications/guide-to-pecr/what-are-pecr/


Cookies and the GDPR laws (2018-)

Cookies are now baked into the European Union General Data Protection
Regulation GDPR and UK GDPR as a form of Personal Data subject to
strict law on the need for explicit consent to be given for processing.

Extract EU GDPR, Recital 30

Natural persons may be associated with online identifiers . . . such as
internet protocol addresses, cookie identifiers or other identifiers . . . .
This may leave traces which, in particular when combined with unique
identifiers and other information received by the servers, may be used to
create profiles of the natural persons and identify them.

9 / 53



Messaging

10 / 53



Privacy manager

11 / 53



Privacy manager

12 / 53



Legitimate interests

(EU/UK) GDPR provides 6 lawful bases for processing personal data, the
sixth one is:

GDPR Article 6(1)(f)

Processing is necessary for the purposes of the legitimate interests
pursued by the controller or by a third party, except where such interests
are overridden by the interests or fundamental rights and freedoms of the
data subject which require protection of personal data, in particular
where the data subject is a child.

See guidance from UK ICO on legitimate interests.

Dozens of companies offer cookie consent management scripts, paid for or free, with
varying formats (e.g., Quantcast, Osano, OneTrust).

Question. (Why) should you use a cookie management company?

13 / 53

https://ico.org.uk/for-organisations/guide-to-data-protection/guide-to-the-general-data-protection-regulation-gdpr/legitimate-interests/when-can-we-rely-on-legitimate-interests/


UK: incoming reform

In October 2024, the Data (Use and Access) Bill was introduced to
parliament. It aims to “unlock the secure and effective use of data for the
public interest, without adding pressures to the country’s finances.”

The previous Data Protection and Digital Information (DPDI) Bill
was dropped during the change of government. Controversially, one of its
aims to “cut down on annoying cookie pop-ups and banners”, by making
cookie consent opt-out rather than opt-in. The DUA intends to focus more
on rights and obligations for the state to share various kinds of data
across health and science. It may still lead to less control for citizens.

See:

▶ Open Rights Group blog

14 / 53

https://www.gov.uk/government/publications/data-use-and-access-bill-factsheets
https://www.openrightsgroup.org/press-releases/demise-of-the-dpdi-is-good-news-for-data-protection-in-the-uk/


Outline
Overview

Essential Basics: Cookies & Sessions

Cookies and the law

Cookies technically

Session hijacking

Cross-site Request Forgery (CSRF)

Unvalidated Redirects

XML External Entities (XXE)

Insecure deserialization

Summary

15 / 53



Cookies in HTTP headers

Specified in RFC6265 (2011)

▶ Just ASCII plain text
▶ Sent by server
▶ Stored in client (database, filesystem, . . . )
▶ Returned by client when visiting page again

▶ Cookies can be set by the server for a particular path/domain
▶ then sent back for any page matching

▶ Multiple cookies may be set and returned
▶ Cookies may have a limited lifetime
▶ set by Expires or Max-Age

Exercise. Discuss some of the security-related implications of cookies
and their design.

16 / 53

https://tools.ietf.org/html/rfc6265


Setting and retrieving cookies

We’ve already seen the Set-Cookie HTTP header line. It can be sent in
responses (to set) and requests (to get).

Server -> User Agent (HTTP response)
Set-Cookie: SID=31d4d96e407aad42; Path=/; Secure; HttpOnly
Set-Cookie: mylanguage=en-GB; Path=/; Domain=example.com

User Agent -> Server (HTTP request)
Cookie: SID=31d4d96e407aad42; mylanguage=en-GB

17 / 53



Secure cookies?

RFC6265: The Secure attribute limits the scope of the cookie to “secure”
channels (where “secure” is defined by the user agent). When a
cookie has the Secure attribute, the user agent will include the cookie in
an HTTP request only if the request is transmitted over a secure channel
(typically HTTP over Transport Layer Security (TLS) [RFC2818]).

▶ . . . provided browser obeys this
▶ still, no harm in using in hope (defence in depth?)

the HttpOnly attribute is similar, and forbids the browser from allowing JavaScript access
to the cookie, in principle at least.

18 / 53

https://tools.ietf.org/html/rfc6265


Expiry dates

Server -> User Agent
Set-Cookie: mylanguage=en-US; Expires=Fri, 2 Nov 2029 10:18:14 GMT

User Agent -> Server
Cookie: SID=31d4d96e407aad42; mylanguage=en-US

▶ Of course, no guarantee cookie is kept for years. . .

19 / 53



Removing cookies

RFC6265: To remove a cookie, the server returns a Set-Cookie header
with an expiration date in the past. The server will be successful in
removing the cookie only if the Path and the Domain attribute in the
Set-Cookie header match the values used when the cookie was created.

Server -> User Agent
Set-Cookie: lang=; Expires=Sun, 06 Nov 1994 08:49:37 GMT

User Agent -> Server
Cookie: SID=31d4d96e407aad42

▶ Again, no guarantee of what browser actually does
▶ . . . if indeed the same browser is being used

20 / 53

https://tools.ietf.org/html/rfc6265


Where are my cookies stored?
Depends on the client program or browser used. . .

$ cd ~/Library/Application\ Support/Firefox/Profiles/*.default/
$ sqlite3 cookies.sqlite
SQLite version 3.37.0 2021-12-09 01:34:53
Enter ".help" for usage hints.
sqlite> .tables
moz_cookies
sqlite> select count(*) from moz_cookies
2536
sqlite> .schema moz_cookies
.schema moz_cookies
CREATE TABLE moz_cookies(id INTEGER PRIMARY KEY, originAttributes TEXT NOT NULL DEFAULT '', name TEXT, value TEXT, host TEXT, path TEXT, expiry INTEGER, lastAccessed INTEGER, creationTime INTEGER, isSecure INTEGER, isHttpOnly INTEGER, inBrowserElement INTEGER DEFAULT 0, sameSite INTEGER DEFAULT 0, rawSameSite INTEGER DEFAULT 0, schemeMap INTEGER DEFAULT 0, CONSTRAINT moz_uniqueid UNIQUE (name, host, path, originAttributes));
sqlite> select count(host) from moz_cookies;
946
sqlite> select distinct host from moz_cookies where host like '%ac.uk';
blogs.ed.ac.uk
.birmingham.ac.uk
.ed.ac.uk
idp.brunel.ac.uk
je-s.rcuk.ac.uk
www.learn.ed.ac.uk
.... 21 / 53



Outline
Overview

Essential Basics: Cookies & Sessions

Cookies and the law

Cookies technically

Session hijacking

Cross-site Request Forgery (CSRF)

Unvalidated Redirects

XML External Entities (XXE)

Insecure deserialization

Summary

22 / 53



Sessions

Recall that a session is a way of linking a series of HTTP requests and
responses over time, typically used to provide state tracking for an
individual user on a device/browser.

Many web apps use session IDs (SIDs) as a credential.

▶ if an attacker steals a SID, she is logged in!

This is session hijacking.

Many possible theft mechanisms:

▶ XSS, sniffing, interception
▶ or: calculate, guess, brute-force
▶ also session fixation
▶ using same SID from unauthenticated to logged in
▶ attacker grabs/sets SID before user visits site

23 / 53



OWASP: Is the application vulnerable?

Poor Session ID (SIDs) management by:

▶ exposing SIDs in the URL (e.g., URL rewriting).
▶ SIDs are vulnerable to session fixation attacks.
▶ SIDs don’t timeout, or sessions/tokens aren’t invalidated in logout.
▶ SIDs are weak (small entropy, or predictable)
▶ Session IDs aren’t rotated after a new login.

24 / 53



Session hijacking defences
Web apps should implement defences, and discard SIDs if something
suspicious happens.

▶ Link SID to IP address of client
▶ but problems if behind NAT, transparent proxies
▶ ISP proxy pools mean need to use subnet, not IP
▶ subnet may be shared with attacker!

▶ Link SID to HTTP Headers, e.g. User-Agent
▶ but can be trivially faked. . . and usually guessed
▶ . . . or captured (trick victim to visit recording site)

See the OWASP Session Management Cheat Sheet.

If in doubt, use a framework with buit-in protections.

General secure programming advice: reuse believed-to-be-secure solutions as far as
possible. It may be tempting to use the latest fancy WhoJamig WebApp Framework but
think twice unless you’re sure it is well programmed for security, not just appearance.

25 / 53

https://github.com/OWASP/CheatSheetSeries/blob/master/cheatsheets/Session_Management_Cheat_Sheet.md


Outlook for identity tracking

Some uses of cookies to track identity are being replaced:

▶ device IDs (still troublesome)
▶ persistent advertising identifiers obtained with consent

Question. What else?

However, session management still requires a token exchanged between the client and
the server-side web application somehow. POST data can be used for this (though clunky).

26 / 53



Outline
Overview

Essential Basics: Cookies & Sessions

Cookies and the law

Cookies technically

Session hijacking

Cross-site Request Forgery (CSRF)

Unvalidated Redirects

XML External Entities (XXE)

Insecure deserialization

Summary

27 / 53



Cross Site Request Forgery (CSRF)

CSRF (CWE-352) is another technical attack which became common in
the 2000s. CVEs still found but (hopefully) dying out.

▶ Attacker triggers malicious action
▶ get user to open malicious link
▶ browser undertakes action on target site

▶ Exploits browser’s trust relationship with a web site
▶ local intranet web site (home router admin, . . . )
▶ banking or email site user is logged into
▶ browser is authorized to connect here

Exercise. Explain how CSRF differs from XSS.

28 / 53

https://cwe.mitre.org/data/definitions/352.html


CSRF in pictures

29 / 53



CSRF in code

Alice is logged in to the (hypothetical) GeeMail web mail system.

She sends an email with this form:
<form

action="http://geemail.com/send_email.htm"
method="GET">
Recipient’s Email address: <input
type="text" name="to">

Subject: <input type="text" name="subject">
Message: <textarea name="msg"></textarea>
<input type="submit" value="Send Email">

</form>

30 / 53



Example GET request

Which sends a request like this:
http://geemail.com/send_email.htm?to=bob%40example.com
&subject=hello&msg=What%27s+the+status+of+that+proposal%3F

31 / 53



Attacker’s cross-site request

Now Mallory just needs Alice to visit a site which loads an image link, e.g.,
by putting a fake image on his own blog:

<img src="http://geemail.com/send_email.htm?
to=charliegeemail.com&subject=Hi&msg=My+
email+address+has+been+stolen">

and Alice’s browser will send an Email via GeeMail!

32 / 53



Confused Deputy problem

CSRF is a case of the Confused deputy problem.

The issue motivates the use of capabilities.

See The Confused Deputy (or why capabilities might have been invented) by Norm Hardy,
ACM SIGOPS Operating Systems Review, 1988. Picture credit: EU FP7 project Serscis.

33 / 53

https://en.wikipedia.org/wiki/Confused_deputy_problem
https://dl.acm.org/doi/10.1145/54289.871709


Avoiding CSRF problems

In general: tricky. Need some way to assure the server code that the
request has come from intended place.

▶ Referer header not tamper proof, may be absent
▶ Session ID cookie sent based on destination
▶ The Same Origin Policy restricts client-side code

Best strategy (as a web developer): use a good framework that provides
built-in protections.

But how do they work?

34 / 53



CSRF defence mechanisms
Some ideas:

▶ Don’t use GET for any (sensitive) state change
▶ starting point

▶ Use a “double cookie” trick, repeated in POST
▶ set a secure secret session ID in a cookie
▶ submit it in cookie and hidden field on form
▶ server-side, check fields identical

▶ Use a special CSRF token in POST
▶ secure random number (challenge) for each login
▶ send this with POST and check server-side
▶ save state: generate using hmac from session ID

See Robust defenses for cross-site request forgery, Barth et al, ACM CCS 2008.

Browser sandboxing enhances this (e.g., in Chrome, separate
tabs/frames run in separate processes).

35 / 53

http://www.stanford.edu/~jcm/papers/ccs2008-barth.pdf


Access control: Cross-Origin Resource Sharing
Modern browsers provide XMLHttpRequest JS API.

▶ script code sends messages back to the originating site, receives XML
(or JSON, HTML, etc).

The same-origin policy became too restricted leading to hacks and
workarounds, culminating in Cross-Origin Resource Sharing (CORS).

CORS uses new HTTP headers from server to allow responses to indicate
violations of same-origin, e.g.

Access-Control-Allow-Origin: http://www.example.com

(allows requests from this www.example.com)
Access-Control-Allow-Origin: *

(allows from any origin; appropriate for public APIs).

See the messaging standard part of HTTP for links to details.
36 / 53

https://html.spec.whatwg.org/multipage/comms.html#comms


Outline
Overview

Essential Basics: Cookies & Sessions

Cookies and the law

Cookies technically

Session hijacking

Cross-site Request Forgery (CSRF)

Unvalidated Redirects

XML External Entities (XXE)

Insecure deserialization

Summary

37 / 53



Leaving HP

38 / 53



Unvalidated redirects and forwards

Web apps often allow redirections which

▶ send users off-site with a polite message
▶ or reroute them immediately

http://www.example.com/redirect.jsp?url=www.disney.com

Also webapps may use forwards which

▶ redirect internally to different parts of the same site

http://www.example.com/login.jsp?fwd=admin.jsp

Question. What’s the security concern here?

39 / 53



Giving attackers legitimacy

▶ Attackers can craft URLs that fool users:

www.example.com/redirect.jsp?url=www.evilhacker.com

These kind of open redirect links (CWE-601) are favourites for phishing
attacks, especially as ultimate destinations can be concealed in URL
encodings.

Notice this may not directly harm www.example.com.

So, preventing open reirects is a typical example of a community wide
desirable security measure (like older cases in network security: open
mail relays, ICMP broadcast, etc.): good practice of all provides security
for others.

40 / 53

https://cwe.mitre.org/data/definitions/601.html


HTTP Redirect responses

URL redirection in HTTP allows resiliency for temporary outages or
website reorganisations.

There are multiple variants with a response type with status codes
begining with 3 (300-399).
HTTP/1.1 301 OK Moved Permanently
Location: http://www.disney.com

41 / 53



Validating redirects

The main risk is with open redirects from user supplied parameters as
above.

Risks can be avoided by validation, to check the redirect is safe (e.g., to a
recognised domain) before sending the response. But filtering can be
tricky so better to:

1. Not use redirects at all
2. Use them but only with hard-wired URLS
3. If user-supplied parameters must be used, use indirection (indexes)

Another solution is to do the generation (& validation) of external links
statically.

Question. Why is static generation of external links still not bullet-proof?

42 / 53



Outline
Overview

Essential Basics: Cookies & Sessions

Cookies and the law

Cookies technically

Session hijacking

Cross-site Request Forgery (CSRF)

Unvalidated Redirects

XML External Entities (XXE)

Insecure deserialization

Summary

43 / 53



XML External Entities (XXE)

▶ Web applications process XML documents which can contain external
references given as URIs.
▶ XML processors may obey these without restriction.
▶ Attacker may be able to upload/control files

Examples were known at least since 2002, exploits became common
around 2014.

Defences: use more restrictive and specific formats for exchanging data,
take care with deserialisation; configure DTD and XML processors to
validate documents, enable security checks, prevent external entity
processing.

This is CWE-611.

See the OWASP Cheat Sheet for some library specific advice.

44 / 53

https://cwe.mitre.org/data/definitions/611.html
https://cheatsheetseries.owasp.org/cheatsheets/XML_External_Entity_Prevention_Cheat_Sheet.html


DTD external entity

<?xml version="1.0" encoding="ISO-8859-1"?>
<!DOCTYPE foo [
<!ELEMENT foo ANY >
<!ENTITY xxe SYSTEM "file:///etc/passwd" >]>
<foo>&xxe;</foo>

Other references could be an internal server:
<!ENTITY xxe SYSTEM "https://192.168.1.1/private" >]>

or DoS with endless stream
<!ENTITY xxe SYSTEM "file:///dev/random" >]>

45 / 53



XML bomb: A billion laughs
Nasty attacks are also possible without loading external entities:
<?xml version="1.0"?>
<!DOCTYPE lolz [
<!ENTITY lol "lol">
<!ELEMENT lolz (#PCDATA)>
<!ENTITY lol1 "&lol;&lol;&lol;&lol;&lol;&lol;&lol;&lol;&lol;&lol;">
<!ENTITY lol2 "&lol1;&lol1;&lol1;&lol1;&lol1;&lol1;&lol1;&lol1;&lol1;&lol1;">
<!ENTITY lol3 "&lol2;&lol2;&lol2;&lol2;&lol2;&lol2;&lol2;&lol2;&lol2;&lol2;">
<!ENTITY lol4 "&lol3;&lol3;&lol3;&lol3;&lol3;&lol3;&lol3;&lol3;&lol3;&lol3;">
<!ENTITY lol5 "&lol4;&lol4;&lol4;&lol4;&lol4;&lol4;&lol4;&lol4;&lol4;&lol4;">
<!ENTITY lol6 "&lol5;&lol5;&lol5;&lol5;&lol5;&lol5;&lol5;&lol5;&lol5;&lol5;">
<!ENTITY lol7 "&lol6;&lol6;&lol6;&lol6;&lol6;&lol6;&lol6;&lol6;&lol6;&lol6;">
<!ENTITY lol8 "&lol7;&lol7;&lol7;&lol7;&lol7;&lol7;&lol7;&lol7;&lol7;&lol7;">
<!ENTITY lol9 "&lol8;&lol8;&lol8;&lol8;&lol8;&lol8;&lol8;&lol8;&lol8;&lol8;">
]>
<lolz>&lol9;</lolz>

See the Wikipedia entry. \ (Similarly, wholly client-side cross-site scripting
attacks are also possible using JavaScript across the DOM)

46 / 53

https://en.wikipedia.org/wiki/Billion_laughs_attack


Outline
Overview

Essential Basics: Cookies & Sessions

Cookies and the law

Cookies technically

Session hijacking

Cross-site Request Forgery (CSRF)

Unvalidated Redirects

XML External Entities (XXE)

Insecure deserialization

Summary

47 / 53



Insecure deserialization

Issue: sending data from one application to another, especially when
using programming-language specific serialization to encode (aka
marshalling).

The deserialization of data received is the point where damage can
occur.

PHP function of concern here:

unserialize(string $data, array $options = [])

The options argument can specify a maximum depth of deserialization
and also a list of class names to accept. The default is to accept all all
classes.

Question. What could go wrong in deserialization that makes it risky?

48 / 53



Warning from PHP manual

49 / 53



Outline
Overview

Essential Basics: Cookies & Sessions

Cookies and the law

Cookies technically

Session hijacking

Cross-site Request Forgery (CSRF)

Unvalidated Redirects

XML External Entities (XXE)

Insecure deserialization

Summary

50 / 53



Review questions
Cookies and sessions

▶ Explain two potential attacks on a web app user which exploit the
app’s usage of cookies.

Redirection

▶ What is an open redirect in a web application and why is it
undesirable?

CSRF

▶ Draw a picture showing how a CSRF attack might work against an
online banking user. What might an attacker be able to do? What
does a CSRF defence mechanism need to be able to do?

XXE

▶ How might a browser’s XML parser be exploited by an attacker and to
what end?

51 / 53



References

This lecture contained material from:

▶ the OWASP Top 10
▶ The Tangled Web: a Guide to Securing Modern Web Applications by

Michal Zalewski, No Starch Press, 2012.

as well as research papers and other sources cited.

52 / 53

https://owasp.org/Top10/
http://www.amazon.co.uk/Tangled-Web-Securing-Modern-Applications/dp/1593273886/


Recommended and further reading
Same-origin Policy:

▶ See the W3C page which states bluntly, There is no single
same-origin policy.
▶ Instead, individual browsers define their own behaviours. See e.g., *

Mozilla’s Same Origin Policy * Google’s Browser Security Handbook

Cross-origin Resource Sharing:

▶ See the XMLHttpRequest Living Standard for details of access control
and the CORS protocol.
▶ In particular, the new HTTP headers for CORS access control
▶ This is linked from the WebSockets living standard, which defines APIs

for web apps to communicate continously with servers
▶ Another useful explanation is in the Mozilla Developer Network

documentation.

See also links to reading given in the slides.
53 / 53

https://www.w3.org/Security/wiki/Same_Origin_Policy
https://developer.mozilla.org/en-US/docs/Web/Security/Same-origin_policy
https://code.google.com/archive/p/browsersec/wikis/Part2.wiki#Same-origin_policy
https://xhr.spec.whatwg.org/
https://fetch.spec.whatwg.org/#cors-protocol
https://fetch.spec.whatwg.org/#http-new-header-syntax
https://websockets.spec.whatwg.org/
https://developer.mozilla.org/en-US/docs/Web/HTTP/Access_control_CORS
https://developer.mozilla.org/en-US/docs/Web/HTTP/Access_control_CORS

	Overview
	Essential Basics: Cookies & Sessions
	Cookies and the law
	Cookies technically

	Session hijacking
	Cross-site Request Forgery (CSRF)
	Unvalidated Redirects
	XML External Entities (XXE)
	Insecure deserialization
	Summary

