
Secure Programming Lecture 13: Code Review and
Static Analysis

David Aspinall

Informatics @ Edinburgh

1 / 47



Outline

Overview

Vulnerabilities and analysis

Principles of static analysis

Simple static analysis tasks

Style checking

Type checking

Summary

2 / 47



Recap

We have looked at:

▶ examples of vulnerabilities and exploits
▶ particular programming failure patterns
▶ secure development processes

Now it’s time to look at some:

▶ principles and tools

for ensuring software security.

3 / 47



Outline

Overview

Vulnerabilities and analysis

Principles of static analysis

Simple static analysis tasks

Style checking

Type checking

Summary

4 / 47



Code review and architectural analysis

Remember the secure software development process “touchpoints”, in
priority order:

1. Code review and repair
2. Architectural risk analysis
3. Penetration testing
4. Risk-based security testing
5. Abuse cases
6. Security requirements
7. Security operations

This lecture examines static analysis as a set of techniques to help with
code review and repair.

Some advanced static analysis techniques may help with architectural
(design) understanding too.

5 / 47



Vulnerabilities in design

Design flaws are best found through architectural analysis. They may be
generic or context-specific.

Generic flaws

▶ Bad behaviour that any system may have

▶ e.g., revealing sensitive information

Context-specific flaws

▶ Particular to security requirements of system

▶ e.g., key length too short for long term usage

6 / 47



Vulnerabilities in code
Security programming bugs (sometimes more serious flaws) are best
found through static code analysis.

Generic defects

▶ Independent of what the code does
▶ May occur in any program
▶ May be language specific
▶ e.g., buffer overflow in C or C++

Context-specific defects

▶ Depend on particular meaning of the code
▶ Even when requirements may be general
▶ Language agnostic. AKA logic errors.
▶ e.g., PCI DSS rules for CC number display violated

Testing is also vital, of course, but has failed spectacularly in some cases.

7 / 47



Vulnerabilities matrix
Seen in Code Only Seen in Design

Matrix from Secure Programming with Static Analysis, Chess and West, 2007.

8 / 47



Common Weakness Enumeration

Recall (from Lecture 7):

▶ Weaknesses classify Vulnerabilities
▶ A CWE is an identifier such as CWE-287
▶ CWEs are organised into a hierarchy
▶ The hierarchy (perhaps confusingly) allows:
▶ multiple appearances of same CWE
▶ different types of links
▶ different ways of grouping CWEs

▶ This allows multiple views
▶ different ways to structure the same things
▶ also given CWE numbers

E.g., the Top 2022 CWE Top 25 is CWE-1387.

See https://cwe.mitre.org

9 / 47

https://cwe.mitre.org


CWE cross section

10 / 47



Seven Pernicious Kingdoms
This developer-oriented classification was introduced by Tsipenyuk, Chess,
and McGraw in 2005.

1. Input validation and representation
2. API abuse
3. Security features
4. Time and state
5. Error handling
6. Code quality
7. Encapsulation
8. Environment (“a separate realm”)

This appears as the view CWE 700.

Exercise. Browse the CWE hierarchy to understand representative
weaknesses in each category.

11 / 47

https://cwe.mitre.org/data/definitions/700.html


CWE 700 at Mitre

12 / 47

https://cwe.mitre.org/data/definitions/700.html


An abstract view

Pillars categorise Classes which collect Base items and Variants. Other high-level views
use Categories and Compounds.

See https://cwe.mitre.org/data/pdfs.html

13 / 47

https://cwe.mitre.org/data/pdfs.html


Outline

Overview

Vulnerabilities and analysis

Principles of static analysis

Simple static analysis tasks

Style checking

Type checking

Summary

14 / 47



Static analysis
A white box technique. Takes as input

▶ source code, usually
▶ binary code, sometimes (Q. Why?)

As output, provides a report listing either

▶ assurance of good behaviour (“no bugs!”) or
▶ evidence of bad behaviour; ideally proposed fixes

40 years of research, now a range of practical tools. Standalone, inside
compilers, IDEs and CI/CD toolchains, code repository platforms like
Github, etc. Complexity range from simple scanners (linear in code size)
to expensive, deep code analysis, exploring possible states in program
execution.

CI/CD=Continuous Integration, Continuous Delivery: part of modern DevOps, promoting
repeatable short-cycle releases and deployment.

15 / 47



Static analysis for security

A perfect fit for security because in principle:

▶ it examines every code path, and
▶ it considers every possible input

Only a single path/input is needed for a security breach.

Dynamic testing only reaches paths determined by test cases and only
uses input data given in test suites.

Other advantages:

▶ often finds root cause of a problem
▶ can run before code complete, even as-you-type

But also some disadvantages/challenges. . .

16 / 47



Solving an impossible task
Perfect static security analysis is impossible.

if halts(f) then
call expose_all_my_secrets

Rice’s Theorem (informal)

For any non-trivial property of partial functions, there is no general and
effective method to decide whether an algorithm computes a partial
function with that property.

For a more formal treatment, see a book on computability or Wikipedia page on Rice’s
Theorem

17 / 47

https://en.wikipedia.org/wiki/Rice%27s_theorem
https://en.wikipedia.org/wiki/Rice%27s_theorem


Static analysis in practice

▶ Correctness is undecidable in general
▶ focus on decidable (approximate) solution
▶ or semi-decidable + manual assistance/timeouts

▶ Avoiding state-space explosion exploring all paths
▶ must design/derive abstractions
▶ data: restricted domains (abstract interpretation)
▶ code: approximate calling contexts

▶ Environment is unknown
▶ program takes input (maybe even code) from outside
▶ other factors, e.g., scheduling of multiple threads
▶ again, use abstractions and simplified assumptions

▶ Complex behaviours difficult to specify
▶ use generic specifications (overflow, NPE)
▶ so-called lightweight methods

18 / 47



Space of programs

19 / 47



Results of a static analysis tool

Tool’s job is to identify insecure programs. "Missing defects" are insecure programs that
the tool failed to warn about, i.e., false negatives. 20 / 47



False positive: false alarms on secure programs

Because the security or correctness question must be approximated,
tools cannot be perfectly precise. They may raise false alarms, or may
miss genuine vulnerabilities.

The false positive problem is hated by users:

▶ too many potential problems raised by tool
▶ programmers have to wade through long lists
▶ true defects may be lost, buried in details

Modern tools minimise false positive rates for usability.

21 / 47



False negatives: defective programs not caught

In practice, tools trade-off false positives with false negatives, missing
defects.

Risky for security:

▶ one missed bug enough for an attacker to get in!

Academic research usually concentrates on sound techniques (an
algorithm guarantees some security property), with no false negatives.

But strong assumptions are needed for soundness. In practice, tools must
accept missing defects.

How are imprecise tools measured and compared? It is difficult. The US
NIST SAMATE project has worked on static analysis benchmarks.

22 / 47

http://samate.nist.gov


Soundiness: in defence of unsoundness
In 2015, a group of researchers wrote a “manifesto” to encourage the
academic community to accept unsound analyses as being necessary in
practice:

▶ a soundy analysis, aims to capture all possible behaviours within
reason, over-approximating actual behaviour and maintaining a
sound core (but omitting difficult language features like, e.g., eval in
JavaScript). Most published academic algorithms and tools are like
this.

▶ an unsound analysis deliberately ignores (under-approximates)
program behaviours and may not have a proven-sound sub-part;
many practical tools are like this.

See http://soundiness.org/

23 / 47

http://soundiness.org/


Incorrectness Logic

A different approach is to focus on precise (sound) but incomplete bug
finding. Facebook’s Infer tool had most success used this way.

This observation was turned into a logic for incorrectness designed by
Peter O’Hearn in 2019 and built into a tool Pulse-X reported on in 2022.

▶ Traditional correctness logics such as Separation Logic (Infer): prove
the absence of bugs
▶ heuristics reduce false positives when correctness can’t be proved

▶ Incorrectness Logic proves the presence of bugs instead
▶ all reported bugs are actual bugs
▶ still no completeness; some bugs may be missed

See Finding Real Bugs in Big Programs with Incorrectness Logic, Quang Loc Le et al, Proc.
ACM Programming Languages, 2022. Available at https://doi.org/10.1145/3527325.

24 / 47

https://doi.org/10.1145/3527325


Outline

Overview

Vulnerabilities and analysis

Principles of static analysis

Simple static analysis tasks

Style checking

Type checking

Summary

25 / 47



Static analysis jobs

A range of jobs can be undertaken by static analysis:

▶ Style checking: ensuring good practice
▶ Type checking: maybe as part of language
▶ Program understanding: inferring meaning
▶ Property checking: ensuring no bad behaviour
▶ Program verification: ensuring correct behaviour
▶ Bug finding: detecting likely errors

General tools in each category may be useful for security. Dedicated
static security analysis tools also exist. Examples are Fortify and
Coverity, both now integrated into larger secure development products.

Other popular tools include Snyk and CodeQL (available standalone or
integrated into GitHub CI).

26 / 47

https://www.microfocus.com/en-us/products/software-security-assurance-sdlc/overview
https://www.synopsys.com/software-integrity.html
https://snyk.io/
https://codeql.github.com/


Outline

Overview

Vulnerabilities and analysis

Principles of static analysis

Simple static analysis tasks

Style checking

Type checking

Summary

27 / 47



Style checking for good practice

Informally, comparing with natural language (intuition)

▶ type system: becomes part of syntax of language
▶ style checking: a bit like grammar checking in NL

Style checking traditionally covers good practice

▶ syntactic coding standards (layout, bracketing etc)
▶ naming conventions (e.g., UPPERCASE constants)
▶ lint-like checking for dubious/non-portable code
▶ modern languages are stricter than old C
▶ (or have fewer implementations)
▶ style checking becoming part of compiler/IDE
▶ but also dedicated tools with 1,000s rules

Example tools: PMD, Parasoft.

28 / 47

https://pmd.github.io/
http://www.parasoft.com


Style checking for good practice

typedef enum { RED, AMBER, GREEN } TrafficLight;

void showWarning(TrafficLight c)
{

switch (c) {
case RED:
printf("Stop!");

case AMBER:
printf("Stop soon!");

}
}

29 / 47



Style as safe practice

Legal in C language, type checks and compiles fine:

[dice] da: gcc enum.c

But with warnings:

[dice] da: gcc -Wall enum.c
enum.c: In function ‘showWarning’:
enum.c:7:3: warning: enumeration value ‘GREEN’ not handled in switch [-Wswitch]

switch (c) {
^

Question. Why have some languages decided that omitted cases should
*not* be allowed?

30 / 47



View in IDE (CodePro Analytix)

A nice Java program analysis tool acquired by Google and made freely
available for a while:

Unfortunately it is no longer available: Google hoped but “had no time” to make it
open-source. Their current developer tools include a range of app testing mechanisms.

31 / 47

https://developers.google.com/


Outline

Overview

Vulnerabilities and analysis

Principles of static analysis

Simple static analysis tasks

Style checking

Type checking

Summary

32 / 47



Type systems: a discipline for programming
Proper type systems provide strong guarantees

▶ Java, ML, Haskell: no type/memory corruption
▶ These are strongly typed languages

Sometimes frustrating: seen as a hurdle. Old joke:

▶ When your Haskell program finally type-checks, it must be right!

Do programmers accept type systems?

▶ yes: type errors are necessary, not “false”
▶ no: they’re overly restrictive, complicated
▶ . . . likely influence on rise of scripting languages

Nowadays: types are important for reliability, security

▶ idea of gradual typing
▶ “subset” languages Hack (from PHP) and TypeScript (from JavaScript)

33 / 47



False positives in type checking

short s = 0;
int i = s;
short r = i;

34 / 47



False positives in type checking

[dice]da: javac ShortLong.java
ShortLong.java:5: error: possible loss of precision

short r = i;
^

required: short
found: int

1 error

35 / 47



False positives in type checking

int i;
if (3 > 4) {

i = i + "hello";
}

36 / 47



False positives in type checking

[dice]da: javac StringInt.java
StringInt.java:5: error: incompatible types

i = i + "hello";
^

required: int
found: String

37 / 47



No false positives in Python

i = 0;
if (4 < 3):

i = i + "hello";

The other way around gives an error in execution:
Traceback (most recent call last):

File "src/stringint.py", line 3, in <module>
i = i + "hello";

TypeError: unsupported operand type(s) for +: 'int' and 'str'

Question. Is this an advantage?

38 / 47



Type systems: intrinsic part of the language

In a statically type language, programs that can’t be type-checked don’t
even have a meaning.

▶ Compiler will not produce code
▶ So code for ill-typed programs cannot be executed
▶ Programming language specifications (formal semantics or plain

English): may give no meaning, or a special meaning.

Well-typed Programs Can’t Go Wrong

Robin Milner (1934-2010) working at Edinburgh, captured this intuition
precisely as a theorem about denotational semantics. Adding a number
to a string gives a special denotational value “wrong”. Any calculation
with wrong gives wrong again.

39 / 47



Type systems: flexible part of the language

In practice, programmers and IDEs do give meaning (sometimes even
execute) partially typed programs.

Recent research: gradual typing (and related work) to make this more
precise:

▶ start with untyped scripting language
▶ infer types in parts of code where possible
▶ manually add type annotations elsewhere
▶ . . . so compiler recovers safety in some form
▶ A good example is TypeScript

Sometimes even strongly-typed languages have escape routes, e.g., via C-library calls or
abominations like unsafePerformIO

40 / 47

https://codedocs.org/what-is/gradual-typing
http://https://www.typescriptlang.org/
https://wiki.haskell.org/Unsafe_functions


Type systems: motivating new languages

High-level languages arrived with strong type systems early on (inspired
from mathematical ideas in functional languages, e.g., Standard ML,
Haskell).

Language designers asked if static typing can be provided for systems
programming languages, without impacting performance too much. Two
prominent young examples:

▶ Go (2007-)
▶ Rust (2009-)

both are conceived as type safe low-level languages with built-in
concurrency support.

Question. Why add concurrency support? Are there benefits for secure
programming?

41 / 47

https://golang.org/
https://www.rust-lang.org/


Type systems: modularity advantage

By design, types provide modularity.

▶ write programs in separate pieces
▶ type check the pieces
▶ put the types together: the whole is type-checked

This property extends to the basic parts of the language: we find the type
of an expression from the type of its parts. Programming language
researchers call this compositionality.

Because of this type systems are a good way to define new static
analyses for particular purposes.

Unfortunately security is often a non-compositional property.

Research question: can we find type systems that provide compositional
guarantees for security?

42 / 47



Galois MATE

A tool made available as open source in 2022 is Galois Inc’s MATE,
“Merged Analysis To prevent Exploits”.

43 / 47

https://galois.com/project/mate/


Outline

Overview

Vulnerabilities and analysis

Principles of static analysis

Simple static analysis tasks

Style checking

Type checking

Summary

44 / 47



Review Questions

Static versus dynamic analysis

▶ Static analysis requires access to source (sometimes binary) code.
What advantages does that enable?

▶ Why do practical static analysis tools both miss problems and report
false problems?

Types of static analysis tool

▶ Apart from type and style checking, describe three other jobs a static
analysis tool may perform.

45 / 47



References and credits

Some of this lecture (and the next) is based Chapters 1-4 of

▶ Secure Programming With Static Analysis by Brian Chess and Jacob
West, Addison-Wesley 2007.

Recommended reading:

▶ Ayewah et al. Using static analysis to find bugs, IEEE Software, 2008.

46 / 47

https://www.pearson.com/us/higher-education/program/Chess-Secure-Programming-with-Static-Analysis/PGM325117.html
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=4602670


Recommended and further reading
Weakness classification in CWE

▶ See Seven pernicious kingdoms: a taxonomy of software security
errors, IEEE Security & Privacy, 3(6), 2005. Browse the CWE View:
Seven Pernicious Kingdoms.

Static analysis introduction

▶ Ayewah et al. Using static analysis to find bugs, IEEE Software, 2008.
▶ Distefano et al. Scaling Static Analyses at Facebook, CACM 62/8,

2019.

For type systems you may know the typing system of Java already,
including features like exceptions and generics. To extend the
robustness of static typing to low-level languages, new languages are
emerging such as

▶ Go, supported by Google
▶ Rust, supported by Mozilla.

47 / 47

https://ieeexplore.ieee.org/abstract/document/1556543
https://ieeexplore.ieee.org/abstract/document/1556543
https://cwe.mitre.org/data/definitions/700.html
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=4602670
https://cacm.acm.org/magazines/2019/8/238344-scaling-static-analyses-at-facebook/fulltext
https://golang.org/
https://www.rust-lang.org/

	Overview
	Vulnerabilities and analysis
	Principles of static analysis
	Simple static analysis tasks
	Style checking
	Type checking

	Summary

