
Secure Programming Lecture 16
Software Protection

David Aspinall

Informatics @ Edinburgh

1 / 39

Outline

Overview

Man-At-The-End Attacks

Defences

Code signing

Obfuscation

Tamperproofing

Watermarking

Summary

2 / 39

Recap

We have looked at:

▶ examples of vulnerabilities and exploits
▶ particular programming failure patterns
▶ security software engineering
▶ tools: static analysis for code review
▶ language-based security

In this lecture we look at the special case of adding security features to
protect software itself.

3 / 39

Outline

Overview

Man-At-The-End Attacks

Defences

Code signing

Obfuscation

Tamperproofing

Watermarking

Summary

4 / 39

Inside vs outside threats

▶ Bob wants to attack Alice

▶ Security perimeter stops bad things
getting in or information leaking out

▶ Axel wants to attack Doris

▶ Security features must protect how
digital assets are used

Note: insider threats more generally refers to threats on left picture when insiders
deliberately violate security policy.

5 / 39

MATE and R-MATE

Man-At-The-End (MATE) Attacks

An adversary has physical access to a device and compromises it by
inspecting, reverse engineering or tampering with its hardware or
software

Remote Man-At-The-End (R-MATE) Attacks

In distributed systems where untrusted clients communicate with trusted
servers, a malicious user gets an advantage by compromising an
untrusted device.

It would be better to use gender neutral names like Person-at-the-end and Remote
Person-at-the-end just as Middle Person is replacing “man-in-the-middle”.

6 / 39

MATE attack scenarios

Example goals of an attacker include:

1. Software piracy
2. License check removal
3. Malicious reverse engineering
4. DRM key extraction
5. Protocol discovery
6. Violation of export/supply chain controls

Mostly, these attack non-availability where there is an attempt to deny
access to an asset, e.g., unless it has been paid for.

7 / 39

License check removal

License check tampering

if (today()>"Aug 17")
abort()

......

......

if (false)
abort()

Alice Bob
P

P
P′

Bob removes license checks to be able to run the program
whenever he wants.

Alice protects her program so that it won’t run after being
tampered with.

3/36

▶ Alice sells a time-limited license for her software
▶ Bob removes the license check to use it indefinitely
▶ Defence: Alice makes her program tamperproof

8 / 39

Malicious reverse engineering

Malicious reverse engineering

Alice Bob
M

P

M M
Q

Alice’s program contains a valuable trade secret (a clever
algorithm or design).

Bob, a rival developer, copies M into his own program
(code lifting).

4/36

▶ Alice’s P has a trade secret algorithm M
▶ Bob copies M into his program (“code lifting”).
▶ Defence: Alice obfuscates her code to make reverse engineering

difficult

9 / 39

R-MATE attack scenarios

Example goals of an attacker include:

1. Cheating in networked computer games
2. Accessing or altering distributed medical records
3. Attacking wireless sensor networks
4. Hacking smart meters to disrupt supply

These examples attack confidentiality and integrity as well as availability.

10 / 39

Cheating in networked computer games

Scenario: Protecting networked computer games

Cached data

Alice Bob
P

P

11/36

▶ Alice runs online game with paid-for inventory
▶ Bob re-uses cached data. Advantage: free resources
▶ Defence: replay-resilient protocol

11 / 39

Wireless sensor network attacks

Scenario: Wireless sensor networks

Radioactivity?
Chemicals?
Troup movements?

Sensor

Wifi

CPU
Code

bad

bad

Alice
Bob

Sensor networks are common in military scenarios.

The enemy can intercept/analyze/modify sensors.

13/36

▶ Alice collects data from a wireless sensor network
▶ Bob interferes with some of the sensors
▶ Defences: anomaly detection, remote attestation.

12 / 39

Outline

Overview

Man-At-The-End Attacks

Defences

Code signing

Obfuscation

Tamperproofing

Watermarking

Summary

13 / 39

Outline

Overview

Man-At-The-End Attacks

Defences

Code signing

Obfuscation

Tamperproofing

Watermarking

Summary

14 / 39

Code signing

▶ Cornerstone for code integrity and authenticity
▶ Detects tampering before code execution
▶ Aims to protect recipient from unsafe code (especially malware)

With a trusted (secure) platform we could also protect against MATE.

Question. How would that work?

Question. What two vulnerabilities can defeat code signing?

15 / 39

Code signing

▶ Cornerstone for code integrity and authenticity
▶ Detects tampering before code execution
▶ Aims to protect recipient from unsafe code (especially malware)

With a trusted (secure) platform we could also protect against MATE.

Question. How would that work?

Question. What two vulnerabilities can defeat code signing?

15 / 39

Outline

Overview

Man-At-The-End Attacks

Defences

Code signing

Obfuscation

Tamperproofing

Watermarking

Summary

16 / 39

Program obfuscation

Here is a program burton1.c:

char O,o[];main(l){for(;~l;O||puts(o))O=(O[o]=
~(l=getchar())?4<(4ˆl>>5)?l:46:0)?-~O&printf("%02x ",l)*5:!O;}

What does this program do?

17 / 39

Program obfuscation

bash-3.2$ gcc burton1.c --no-warnings -o burton1
bash-3.2$ echo "David" | ./burton1
44 61 76 69 64 0a David.

This is a winner from the 2018 International Obfuscated C Code Contest.
It won as the best one-liner, a judge noted: One line, one array, one loop
and one statement but it prints many bytes. It won.

Similar contests are available in other languages. Most entries are
intended as fun puzzles, rather than serious efforts at software protection.

18 / 39

https://en.wikipedia.org/wiki/International_Obfuscated_C_Code_Contest
https://ioccc.org/2018/burton1/hint.html

Obfuscating compilation

P
C

Obfuscating
Compiler

P’

An obfuscating compiler C transforms a program P into a functionally
equivalent program P′.

The idea is that P′ conceals the code of P to be “inscrutable” so an
attacker cannot learn information about its operation (algorithms, or
embedded data such as cryptographic keys).

Question. What properties should C have?

19 / 39

Practical obfuscation
Many intuitively obfuscating techniques can be used:

▶ Rename identifiers. Use equivalent expressions (e.g., bit shift
multiply)
▶ Code and data: reorder, duplicate, add dummies
▶ Flatten control flow (e.g., use jump tables)
▶ Merge and split functions (inline, outline)
▶ Introduce pointer aliases. Add concurrency.
▶ Use opaque predicates.
▶ Use a custom abstract machine

Combining these transformations can make human understanding hard
and thwart automated code analysis. Various obfuscation tools
(commercial, non-commercial) are available.

Exercise. Which operations are guaranteed to make analysis difficult?
(hard question)

20 / 39

Obfuscation in theory

Black box simulator

The black-box simulator SP of P can only observe the input-output
behaviour of P, nothing about its code or timing.

C is a good obfuscator if an attacker cannot learn anything more about P
by examining C(P) than from its black-box behaviour SP.

Virtual Black-Box Security

C is virtual black box secure if for all P, for all attacks A which examine
the obfuscation P′ = C(P), then A(P′) ≃c A(SP).

≃c is computational indistinguishability which restricts to computationally bounded
attackers whose power depends on a security parameter (e.g., limiting runtime).

21 / 39

The power of general obfuscation

In fact, many cryptographic primitives can be derived from obfuscation.

Symmetric to Asymmetric Crypto

Given a secret key K and symmetric encryption function EK, publish its
obfuscated version C(EK). Thus anyone can encrypt but only the owner
who knows K can decrypt.

Homomorphic Encryption

Homomorphic encryption allows general computation on encrypted data.
For any boolean operation f , the plain program P computes EK(f (DK(x))).
Its obfuscated version hides the key K and encryption method.

22 / 39

Impossibility of (general) obfuscation
Given the power of a perfect obfuscation primitive, it isn’t surprising that
it is hard to find one. . .

A celebrated result of Barak et al shows that it is impossible to construct
an obfuscating compiler that satisfies virtual black box (VBB) security.
The proof uses a counterexample, based on a program Secret which
recognises a hidden secret value S and also recognises its own code,
outputting S; its VBB obfuscation must hide the secret but also
necessarily reveal it!

This result doesn’t mean that we can’t have an obfuscating compiler that works on some
programs. Also, VBB is a very strong requirement, weaker notions like Indistinguishability
Obfuscation may be enough in practice.

Barak et al. On the (Im)possibility of Obfuscating Programs. CRYPTO 2001. See Chapter 5
of Surreptitious Software for a listing of a program Secret.

23 / 39

https://www.pearson.com/us/higher-education/program/Collberg-Surreptitious-Software-Obfuscation-Watermarking-and-Tamperproofing-for-Software-Protection-Obfuscation-Watermarking-and-Tamperproofing-for-Software-Protection/PGM294725.html

Outline

Overview

Man-At-The-End Attacks

Defences

Code signing

Obfuscation

Tamperproofing

Watermarking

Summary

24 / 39

Software Tamperproofing

Tamperproofing aims to make sure a program executes as intended by its
author, even when the person running may try to disrupt, monitor or
change execution.

Two aspects, captured as functions in code (or environment):

▶ Check to see if tampering has occurred
▶ Respond somehow, imposing a penalty

The penalty might be to exit the program or degrade its operation.

Question. How is this requirement stronger than integrity checking with
a code hash?

25 / 39

Tamperproof Checking

Checking may examine different things:

▶ Code checking: has program been changed?
▶ Result checking: is result of computation correct?
▶ Environment checking: are we running in a debugger?

26 / 39

Tamperproof Responding

Responding may take different actions:

▶ Termination
▶ Restore recover the program to intended state
▶ Degrade return incorrect results; slow down operation
▶ Report phone home to owner
▶ Punish destroy program, data or environment

In each the first 4 cases, response may be designed to be stealthy to
avoid alerting user (or helping attacker defeat system).

27 / 39

Pervasive Hashing

One technique is to to use multiple hashing methods and compute
multiple hashes on fragments of code.

Then spread the hash computation repeatedly throughout the code.

To help prevent attackers figuring out the scheme, tamperproofing is
combined with obfuscation.

The Skype VoIP clients used this technique.

28 / 39

Outline

Overview

Man-At-The-End Attacks

Defences

Code signing

Obfuscation

Tamperproofing

Watermarking

Summary

29 / 39

Digital Watermarking

Digital Watermarking hides one digital signal inside another, perhaps
covertly (i.e., invisibly) exploiting properties of the human visual system.

The “Lena” image was a standard test image used in early days of digital image
processing research, this is from an influential 1996 paper (reference at end). It is not an

acceptable image to use nowadays!

30 / 39

Software Watermarking

P

w

k

Watermark
Embedding Function Pw

A watermark embedding function transforms a program P into a
watermarked program Pw = embedk(P,w).

▶ A secret key k is needed to guide embedding
▶ The watermark should be recoverable, perhaps probabilistically, to

someone who has the key k, or more widely if intended.
▶ It should be robust (not removable)
▶ Have high credibility (low FP, FN accuracy)

31 / 39

Applications

Various applications of watermarking, depending on what data is
embedded:

▶ Track Authorship: copyright owner
▶ Track Purchaser: purchaser/licensee (fingerprinting)
▶ Record Rights: usage restrictions
▶ Integrity: cryptographic hash of code

The last case is essentially the same as code signing.

32 / 39

Watermarking techniques

Numerous methods:

▶ Embed meta data directly (strings in code)
▶ use “opaque predicates” to make robust
▶ or code signing

▶ Encode information in obfuscation operations
▶ e.g., permutation of code blocks

▶ Use a public blockchain to record metadata, hash values
▶ Non-Fungible Tokens (NFTs)

33 / 39

Using opaque predicates

public class Fibonacci {
public int fibonacci (int n) {

String copyright = "Copyright (C) by Clever Coders, Inc";
if complexTest()

n = length(copyright);
if (n <= 2)
return 1;

else
return fib(n-1) + fib(n-2);

}
}

An opaque predicate is one whose value is a constant, known to the programmer, but is
not obvious from the code and so must be computed at run time.

34 / 39

Outline

Overview

Man-At-The-End Attacks

Defences

Code signing

Obfuscation

Tamperproofing

Watermarking

Summary

35 / 39

Summary

Protecting software and information usage rights is often required and a
range of countermeasures have been developed.

▶ Code signing: cryptographic assurance about integrity and origin
▶ Obfuscation: raises attacker effort for reversing
▶ Watermarking: visibly/invisibly trace software/data
▶ Tamperproofing: detect modification and abort
▶ Hardware root of trust: lock code/execution to a device (TPMs etc)
▶ Advanced crypto: compute on encrypted data

The last two methods are both becoming more practical and in future
may replace (or augment) earlier ones.

36 / 39

Review Questions

Software protection defence methods

▶ Compare and contrast each of the defence measures.
▶ Do any of the methods improve or detract from the situation with

potentially exploitable code vulnerabilities?

Software protection attack methods

▶ What methods are open to the attacker against each of the defences
listed?
▶ Discuss the potential use of cryptographically oriented attacks

against software protection methods.

37 / 39

References and credits

Most of this lecture is based on the 2009 Addison-Wesley book:

▶ Surreptitious Software by Christian Collberg and Jasvir Nagra.

Pictures of the attack scenarios are used with permission from Christian Collberg’s slides.

The image of code signing is from Comodo’s page How Does EV Code Signing Work?.

The example of watermarked images is from the paper Transparent Robust Image
Watermarking by Swanson, Zhu and Tewfik, International Conference on Image
Processing, Sept 1996.

38 / 39

https://www.pearson.com/us/higher-education/program/Collberg-Surreptitious-Software-Obfuscation-Watermarking-and-Tamperproofing-for-Software-Protection-Obfuscation-Watermarking-and-Tamperproofing-for-Software-Protection/PGM294725.html
https://comodosslstore.com/code-signing/how-ev-code-signing-works

Further reading

Collberg’s book Surreptitious Software is currently out-of-print and the
University’s subscription to InformIT comes and goes. But you can read
some of Christian Collberg’s papers here:

▶ https:
//scholar.google.co.uk/citations?user=Iq_d12gAAAAJ&hl=en&oi=ao

Here is a 2017 literature review from on some of the techniques
mentioned:

▶ https://doi.org/10.1016/j.infsof.2018.07.007

(Mainly useful for pointers, but the overview of tool aims and methods in
Section 4 and Tables 2 and 3, Fig 11 are interesting to look at.)

39 / 39

https://scholar.google.co.uk/citations?user=Iq_d12gAAAAJ&hl=en&oi=ao
https://scholar.google.co.uk/citations?user=Iq_d12gAAAAJ&hl=en&oi=ao
https://doi.org/10.1016/j.infsof.2018.07.007

	Overview
	Man-At-The-End Attacks
	Defences
	Code signing
	Obfuscation
	Tamperproofing
	Watermarking

	Summary

