
Adapted Stuart Anderson (c) 2007 Mauro Pezzè & Michal Young Ch 22, slide 1

System, Acceptance, and Regression Testing

Adapted Stuart Anderson (c) 2007 Mauro Pezzè & Michal Young Ch 22, slide 2

Learning objectives
• Distinguish system and acceptance testing

– How and why they differ from each other and from unit and integration
testing

• Be able to explain basic approaches for quantitative assessment
(reliability, performance, ...)

• Be able to account for the interplay of validation and
verification for usability and accessibility
– How to continuously monitor usability from early design to delivery

• Be able to motivate basic regression testing approaches
– Preventing accidental changes and checking updated versions

Adapted Stuart Anderson (c) 2007 Mauro Pezzè & Michal Young Ch 22, slide 3

System Acceptance Regression

Test for ... Correctness,
completion

Usefulness,
satisfaction

Accidental
changes/upd
ates

Test by ... Development
test group

Test group with
users

Development
test group

Verification Validation Verification

System testing
22.2

Adapted Stuart Anderson (c) 2007 Mauro Pezzè & Michal Young Ch 22, slide 4

System Testing
• Key characteristics:

– Comprehensive (the whole system, the whole spec)
– Based on specification of observable behavior

 Verification against a requirements specification, not validation, and not opinions

– Independent of design and implementation

Independence: Avoid repeating software design errors in system
test design

Adapted Stuart Anderson (c) 2007 Mauro Pezzè & Michal Young Ch 22, slide 5

Independent V&V
• One strategy for maximizing independence: System (and

acceptance) test performed by a different organization
– Organizationally isolated from developers (no pressure to say “ok”)
– Sometimes outsourced to another company or agency

• Especially for critical systems
• Outsourcing for independent judgment, not to save money
• May be additional system test, not replacing internal V&V

– Not all outsourced testing is IV&V
• Not independent if controlled by development organization

Adapted Stuart Anderson (c) 2007 Mauro Pezzè & Michal Young Ch 22, slide 6

Independence without changing staff
• If the development organization controls system testing ...

– Perfect independence may be unattainable, but we can reduce undue
influence

• Develop system test cases early
– As part of requirements specification, before major design decisions

have been made
• Agile “test first” and conventional “V model” are both examples of designing

system test cases before designing the implementation
• An opportunity for “design for test”: Structure system for critical system testing

early in project

Adapted Stuart Anderson (c) 2007 Mauro Pezzè & Michal Young Ch 22, slide 7

Incremental System Testing
• System tests are often used to measure progress

– System test suite covers all features and scenarios of use
– As project progresses, the system passes more and more system tests

• Assumes a “threaded” incremental build plan: Features exposed
at top level as they are developed

Adapted Stuart Anderson (c) 2007 Mauro Pezzè & Michal Young Ch 22, slide 8

Global Properties
• Some system properties are inherently global

– Performance, latency, reliability, ...
– Early and incremental testing is still necessary, but provide only

estimates

• A major focus of system testing
– The only opportunity to verify global properties against actual system

specifications
– Especially to find unanticipated effects, e.g., an unexpected

performance bottleneck

Adapted Stuart Anderson (c) 2007 Mauro Pezzè & Michal Young Ch 22, slide 9

Context-Dependent Properties
• Beyond system-global: Some properties depend on the system

context and use
– Example: Performance properties depend on environment and

configuration
– Example: Privacy depends both on system and how it is used

• Medical records system must protect against unauthorized use, and authorization
must be provided only as needed

– Example: Security depends on threat profiles
• And threats change!

• Testing is just one part of the approach

Adapted Stuart Anderson (c) 2007 Mauro Pezzè & Michal Young Ch 22, slide 10

Establishing an Operational Envelope
• When a property (e.g., performance or real-time response) is

parameterized by use ...
– requests per second, size of database, ...

• Extensive stress testing is required
– varying parameters within the envelope, near the bounds, and beyond

• Goal: A well-understood model of how the property varies with
the parameter
– How sensitive is the property to the parameter?
– Where is the “edge of the envelope”?
– What can we expect when the envelope is exceeded?

Adapted Stuart Anderson (c) 2007 Mauro Pezzè & Michal Young Ch 22, slide 11

Stress Testing
• Often requires extensive simulation of the execution

environment
– With systematic variation: What happens when we push the parameters?

What if the number of users or requests is 10 times more, or 1000 times
more?

• Often requires more resources (human and machine) than typical
test cases
– Separate from regular feature tests
– Run less often, with more manual control
– Diagnose deviations from expectation

• Which may include difficult debugging of latent faults!

Adapted Stuart Anderson (c) 2007 Mauro Pezzè & Michal Young Ch 22, slide 12

Acceptance testing
22.3

Adapted Stuart Anderson (c) 2007 Mauro Pezzè & Michal Young Ch 22, slide 13

Estimating Dependability
• Measuring quality, not searching for faults

– Fundamentally different goal than systematic testing

• Quantitative dependability goals are statistical
– Reliability
– Availability
– Mean time to failure
– ...

• Requires valid statistical samples from operational profile
– Fundamentally different from systematic testing

Adapted Stuart Anderson (c) 2007 Mauro Pezzè & Michal Young Ch 22, slide 14

Statistical Sampling
• We need a valid operational profile (model)

– Sometimes from an older version of the system
– Sometimes from operational environment (e.g., for an embedded

controller)
– Sensitivity testing reveals which parameters are most important, and

which can be rough guesses

• And a clear, precise definition of what is being measured
– Failure rate? Per session, per hour, per operation?

• And many, many random samples
– Especially for high reliability measures

Adapted Stuart Anderson (c) 2007 Mauro Pezzè & Michal Young Ch 22, slide 15

Is Statistical Testing Worthwhile?
• Necessary for ...

– Critical systems (safety critical, infrastructure, ...)

• But difficult or impossible when ...
– Operational profile is unavailable or just a guess

• Often for new functionality involving human interaction
– But we may factor critical functions from overall use to obtain a good model of

only the critical properties

– Reliability requirement is very high
• Required sample size (number of test cases) might require years of test execution
• Ultra-reliability can seldom be demonstrated by testing

Adapted Stuart Anderson (c) 2007 Mauro Pezzè & Michal Young Ch 22, slide 16

Process-based Measures
• Less rigorous than statistical testing

– Based on similarity with prior projects

• System testing process
– Expected history of bugs found and resolved

• Alpha, beta testing
– Alpha testing: Real users, controlled environment
– Beta testing: Real users, real (uncontrolled) environment
– May statistically sample users rather than uses
– Expected history of bug reports

Adapted Stuart Anderson (c) 2007 Mauro Pezzè & Michal Young Ch 22, slide 17

Usability
22.4

Adapted Stuart Anderson (c) 2007 Mauro Pezzè & Michal Young Ch 22, slide 18

Usability
• A usable product

– is quickly learned
– allows users to work efficiently
– is pleasant to use

• Objective criteria
– Time and number of operations to perform a task
– Frequency of user error

• blame user errors on the product!

• Plus overall, subjective satisfaction

Adapted Stuart Anderson (c) 2007 Mauro Pezzè & Michal Young Ch 22, slide 19

Verifying Usability
• Usability rests ultimately on testing with real users — validation,

not verification
– Preferably in the usability lab, by usability experts

• But we can factor usability testing for process visibility —
validation and verification throughout the project
– Validation establishes criteria to be verified by testing, analysis, and

inspection

Adapted Stuart Anderson (c) 2007 Mauro Pezzè & Michal Young Ch 22, slide 20

Factoring Usability Testing
Validation
(usability lab)
• Usability testing establishes

usability check-lists
– Guidelines applicable across a product

line or domain

• Early usability testing evaluates
“cardboard prototype” or mock-up
– Produces interface design

Verification
(developers, testers)
• Inspection applies usability check-

lists to specification and design

• Behavior objectively verified (e.g.,
tested) against interface design

Adapted Stuart Anderson (c) 2007 Mauro Pezzè & Michal Young Ch 22, slide 21

Varieties of Usability Test
• Exploratory testing

– Investigate mental model of users
– Performed early to guide interface design

• Comparison testing
– Evaluate options (specific interface design choices)
– Observe (and measure) interactions with alternative interaction patterns

• Usability validation testing
– Assess overall usability (quantitative and qualitative)
– Includes measurement: error rate, time to complete

Adapted Stuart Anderson (c) 2007 Mauro Pezzè & Michal Young Ch 22, slide 22

Typical Usability Test Protocol
• Select representative sample of user groups

– Typically 3-5 users from each of 1-4 groups
– Questionnaires verify group membership

• Ask users to perform a representative sequence of tasks
• Observe without interference (no helping!)

– The hardest thing for developers is to not help. Professional usability
testers use one-way mirrors.

• Measure (clicks, eye movement, time, ...) and follow up with
questionnaire

Adapted Stuart Anderson (c) 2007 Mauro Pezzè & Michal Young Ch 22, slide 23

Accessibility Testing
• Check usability by people with disabilities

– Blind and low vision, deaf, color-blind, ...

• Use accessibility guidelines
– Direct usability testing with all relevant groups is usually impractical;

checking compliance to guidelines is practical and often reveals
problems

• Example: W3C Web Content Accessibility Guidelines
– Parts can be checked automatically
– but manual check is still required

• e.g., is the “alt” tag of the image meaningful?

Adapted Stuart Anderson (c) 2007 Mauro Pezzè & Michal Young Ch 22, slide 24

Regression Testing
22.5–22.7

Adapted Stuart Anderson (c) 2007 Mauro Pezzè & Michal Young Ch 22, slide 25

Regression
• Yesterday it worked, today it doesn’t

– I was fixing X, and accidentally broke Y
– That bug was fixed, but now it’s back

• Tests must be re-run after any change
– Adding new features
– Changing, adapting software to new conditions
– Fixing other bugs

• Regression testing can be a major cost of software maintenance
– Sometimes much more than making the change

Adapted Stuart Anderson (c) 2007 Mauro Pezzè & Michal Young Ch 22, slide 26

Basic Problems of Regression Test
• Maintaining test suite

– If I change feature X, how many test cases must be revised because they
use feature X?

– Which test cases should be removed or replaced? Which test cases
should be added?

• Cost of re-testing
– Often proportional to product size, not change size
– Big problem if testing requires manual effort

• Possible problem even for automated testing, when the test suite and test
execution time grows beyond a few hours

Adapted Stuart Anderson (c) 2007 Mauro Pezzè & Michal Young Ch 22, slide 27

Test Case Maintenance
• Some maintenance is inevitable

– If feature X has changed, test cases for feature X will require updating

• Some maintenance should be avoided
– Example: Trivial changes to user interface or file format should not

invalidate large numbers of test cases

• Test suites should be modular!
– Avoid unnecessary dependence
– Generating concrete test cases from test case specifications can help

Adapted Stuart Anderson (c) 2007 Mauro Pezzè & Michal Young Ch 22, slide 28

Obsolete and Redundant
• Obsolete: A test case that is not longer valid

– Tests features that have been modified, substituted, or removed
– Should be removed from the test suite

• Redundant: A test case that does not differ significantly from
others
– Unlikely to find a fault missed by similar test cases
– Has some cost in re-execution
– Has some (maybe more) cost in human effort to maintain
– May or may not be removed, depending on costs

Adapted Stuart Anderson (c) 2007 Mauro Pezzè & Michal Young Ch 22, slide 29

Selecting and Prioritizing Regression Test Cases
• Should we re-run the whole regression test suite? If so, in what

order?
– Maybe you don’t care. If you can re-rerun everything automatically over

lunch break, do it.
– Sometimes you do care ...

• Selection matters when
– Test cases are expensive to execute

• Because they require special equipment, or long run-times, or cannot be fully
automated

• Prioritization matters when
– A very large test suite cannot be executed every day

Adapted Stuart Anderson (c) 2007 Mauro Pezzè & Michal Young Ch 22, slide 30

Code-based Regression Test Selection
• Observation: A test case can’t find a fault in code it doesn’t

execute
– In a large system, many parts of the code are untouched by many test

cases

• So: Only execute test cases that execute changed or new code

Adapted Stuart Anderson (c) 2007 Mauro Pezzè & Michal Young Ch 22, slide 31

Control-flow and Data-flow Regression Test Selection
• Same basic idea as code-based selection

– Re-run test cases only if they include changed elements
– Elements may be modified control flow nodes and edges, or definition-

use (DU) pairs in data flow

• To automate selection:
– Tools record elements touched by each test case

• Stored in database of regression test cases

– Tools note changes in program
– Check test-case database for overlap

Adapted Stuart Anderson (c) 2007 Mauro Pezzè & Michal Young Ch 22, slide 32

Specification-based Regression Test Selection
• Like code-based and structural regression test case selection

– Pick test cases that test new and changed functionality

• Difference: No guarantee of independence
– A test case that isn’t “for” changed or added feature X might find a bug

in feature X anyway

• Typical approach: Specification-based prioritization
– Execute all test cases, but start with those that related to changed and

added features

Adapted Stuart Anderson (c) 2007 Mauro Pezzè & Michal Young Ch 22, slide 33

Prioritized Rotating Selection
• Basic idea:

– Execute all test cases, eventually
– Execute some sooner than others

• Possible priority schemes:
– Round robin: Priority to least-recently-run test cases
– Track record: Priority to test cases that have detected faults before

• They probably execute code with a high fault density

– Structural: Priority for executing elements that have not been recently
executed

• Can be coarse-grained: Features, methods, files, ...

Adapted Stuart Anderson (c) 2007 Mauro Pezzè & Michal Young Ch 22, slide 34

Adapted Stuart Anderson (c) 2007 Mauro Pezzè & Michal Young Ch 22, slide 35

Summary
• System testing is verification

– System consistent with specification?
– Especially for global properties (performance, reliability)

• Acceptance testing is validation
– Includes user testing and checks for usability

• Usability and accessibility require both
– Usability testing establishes objective criteria to verify throughout

development

• Regression testing repeated after each change
– After initial delivery, as software evolves

