
Finite Models

Adapted Stuart Anderson from (c) 2007 Mauro Pezzè & Michal Young Ch 5, slide 109/10/2023

Learning objectives

• Be able to explain the relationship between a finite state abstraction
and the original system and describe some consequences of this
when the model is used to approximate the original system.

• Learn how to model program control flow with graphs

• Learn how to model the software system structure with call graphs

• Learn how to model finite state behavior with finite state machines

Adapted Stuart Anderson from (c) 2007 Mauro Pezzè & Michal Young Ch 5, slide 209/10/2023

Properties of Models

• Compact: representable and manipulable in a reasonably compact form
• What is reasonably compact depends largely on how the model will be used

• Predictive: must represent some salient characteristics of the modeled artifact well enough to
distinguish between good and bad outcomes of analysis

• no single model represents all characteristics well enough to be useful for all kinds of analysis

• Semantically meaningful: it is usually necessary to interpret analysis results in a way that permits
diagnosis of the causes of failure

• Sufficiently general: models intended for analysis of some important characteristic must be
general enough for practical use in the intended domain of application

Adapted Stuart Anderson from (c) 2007 Mauro Pezzè & Michal Young Ch 5, slide 309/10/2023

Models approximate/abstract

09/10/2023 Adapted Stuart Anderson from (c) 2007 Mauro Pezzè & Michal Young Ch 5, slide 4

Graph Representations: directed graphs

• Directed graph:
• N (set of nodes)

• E (relation on the set of nodes) edges

Adapted Stuart Anderson from (c) 2007 Mauro Pezzè & Michal Young Ch 5, slide 5

Nodes: {a, b, c}

Edges: {(a,b), (a, c), (c, a)}

a

b c

b a c

09/10/2023

Graph Representations: labels and code

• We can label nodes with the names or descriptions of the entities they represent.
• If nodes a and b represent program regions containing assignment statements, we might

draw the two nodes and an edge (a,b) connecting them in this way:

09/10/2023 Adapted Stuart Anderson from (c) 2007 Mauro Pezzè & Michal Young Ch 5, slide 6

x = y + z;

a = f(x);

Finite Abstraction of Behavior
an abstraction function suppresses some details of program execution

Adapted Stuart Anderson from (c) 2007 Mauro Pezzè & Michal
Young

Ch 5, slide 8

it lumps together execution states that differ with respect to the suppressed
details but are otherwise identical

(Intraprocedural) Control Flow Graph

• nodes = regions of source code (basic blocks)
• Basic block = maximal program region with a single entry and single exit point

• Often statements are grouped in single regions to get a compact model

• Sometime single statements are broken into more than one node to model
control flow within the statement

• directed edges = possibility that program execution proceeds from
the end of one region directly to the beginning of another

Adapted Stuart Anderson from (c) 2007 Mauro Pezzè & Michal Young Ch 5, slide 9

Example of Control Flow Graph

09/10/2023 Adapted Stuart Anderson from (c) 2007 Mauro Pezzè & Michal Young Ch 5, slide 10

public static String collapseNewlines(String argStr)

{

char last = argStr.charAt(0);

StringBuffer argBuf = new StringBuffer();

for (int cIdx = 0 ; cIdx < argStr.length(); cIdx++)

{

char ch = argStr.charAt(cIdx);

if (ch != '\n' || last != '\n')

{

argBuf.append(ch);

last = ch;

}

}

return argBuf.toString();

}

Linear Code Sequence and Jump (LCSJ)

From Sequence of basic blocs To

Entry b1 b2 b3 jX

Entry b1 b2 b3 b4 jT

Entry b1 b2 b3 b4 b5 jE

Entry b1 b2 b3 b4 b5 b6 b7 jL

jX b8 ret

jL b3 b4 jT

jL b3 b4 b5 jE

jL b3 b4 b5 b6 b7 jL

Adapted Stuart Anderson from (c) 2007 Mauro Pezzè & Michal Young Ch 5, slide 11

Essentially subpaths of the control flow
graph from one branch to another

Interprocedural control flow graph

• Call graphs
• Nodes represent procedures

• Methods

• C functions

• ...

• Edges represent calls relation

09/10/2023 Adapted Stuart Anderson from (c) 2007 Mauro Pezzè & Michal Young Ch 5, slide 12

Overestimating the calls relation

public class C {
public static C cFactory(String kind) {

if (kind == "C") return new C();
if (kind == "S") return new S();
return null;

}
void foo() {

System.out.println("You called the parent's method");
}
public static void main(String args[]) {

(new A()).check();
}

}
class S extends C {

void foo() {
System.out.println("You called the child's method");

}
}
class A {

void check() {
C myC = C.cFactory("S");
myC.foo();

}
}

Adapted Stuart Anderson from (c) 2007 Mauro Pezzè & Michal
Young

Ch 5, slide 13

The static call graph includes calls through dynamic
bindings that never occur in execution.

A.check()

C.foo() S.foo() CcFactory(string)

Contex Insensitive Call graphs

public class Context {

public static void main(String args[]) {

Context c = new Context();

c.foo(3);

c.bar(17);

}

void foo(int n) {

int[] myArray = new int[n];

depends(myArray, 2) ;

}

void bar(int n) {

int[] myArray = new int[n];

depends(myArray, 16) ;

}

void depends(int[] a, int n) {

a[n] = 42;

}

}

09/10/2023 Adapted Stuart Anderson from (c) 2007 Mauro Pezzè & Michal Young Ch 5, slide 14

main

C.foo C.bar

C.depends

Contex Sensitive Call graphs

public class Context {

public static void main(String args[]) {

Context c = new Context();

c.foo(3);

c.bar(17);

}

void foo(int n) {

int[] myArray = new int[n];

depends(myArray, 2) ;

}

void bar(int n) {

int[] myArray = new int[n];

depends(myArray, 16) ;

}

void depends(int[] a, int n) {

a[n] = 42;

}

}

09/10/2023 Adapted Stuart Anderson from (c) 2007 Mauro Pezzè & Michal Young Ch 5, slide 15

main

C.foo(3) C.bar(17)

C.depends(int(3),a,2) C.depends (int(3),a,2)

Context Sensitive CFG
exponential growth

Adapted Stuart Anderson from (c) 2007 Mauro Pezzè & Michal Young Ch 5, slide 16

A

B

D

F

H

C

E

G

I

J

1 context A

2 contexts AB AC

4 contexts ABD ABE ACD ACE

8 contexts …

16 calling contexts …

09/10/2023

Finite state machines

Graph representation (Mealy machine) Tabular representation

Adapted Stuart Anderson from (c) 2007 Mauro Pezzè & Michal Young Ch 5, slide 17

LF CR EOF other

e e/emit e/emit d/- w/append

w e/emit e/emit d/emit w/append

l e/- d/- w/append

finite set of states (nodes)

set of transitions among states (edges)

Using Models to Reason about System
Properties

Adapted Stuart Anderson from (c) 2007 Mauro Pezzè & Michal Young Ch 5, slide 1809/10/2023

Abstraction Function

Adapted Stuart Anderson from (c) 2007 Mauro Pezzè & Michal Young Ch 5, slide 1909/10/2023

Summary

• Models are simpler than the artifact they describe to be
understandable and analyzable

• Must be sufficiently detailed to be useful in a particular context

• Flow Graphs are built from software

• FSM can be built before software to document intended behavior or
explore designs

• FSM can be the basis for tools such as statecharts:
https://statecharts.dev/

Adapted Stuart Anderson from (c) 2007 Mauro Pezzè & Michal Young Ch 5, slide 2009/10/2023

https://statecharts.dev/

