
Combinatorial testing

Updated Stuart Anderson from (c) 2007 Mauro Pezzè & Michal
Young

Ch 11, slide 123/10/2023

Learning objectives

• Be able to explain the rationale and basic approach for systematic
combinatorial testing
• Be able to apply some representative combinatorial approaches
• Category-partition testing
• Pairwise combination testing
• Catalog-based testing

• Be able to explain the differences and similarities among the
approaches
• and application domains for which they are suited

Updated Stuart Anderson from (c) 2007 Mauro Pezzè & Michal Young Ch 11, slide 223/10/2023

Combinatorial testing: Basic idea

• Identify distinct attributes that can be varied
• In the data, environment, or configuration
• Example: browser could be “Chrome” or “Firefox”, operating system could be

“Win11”, “Linux”, or “MacOS”

• Systematically generate combinations to be tested
• Example: Chrome on Win11, Chrome on Linux, Firefox on Win11, Firefox on

MacOS, ...

• Rationale: Test cases should be varied and include possible “corner
cases”

Updated Stuart Anderson from (c) 2007 Mauro Pezzè & Michal Young Ch 11, slide 323/10/2023

Key ideas in combinatorial approaches

• Category-partition testing
• separate (manual) identification of values that characterize the input space from (automatic)

generation of combinations
for test cases

• Pairwise testing
• systematically test interactions among attributes of the program input space with a relatively

small number of test cases

• Catalog-based testing
• aggregate and synthesize the experience of test designers in a particular organization or

application domain, to aid in identifying attribute values

Updated Stuart Anderson from (c) 2007 Mauro Pezzè & Michal Young Ch 11, slide 423/10/2023

Category partition (manual steps)

1. Decompose the specification into independently testable features
– for each feature identify

• parameters
• environment elements

– for each parameter and environment element identify elementary characteristics
(categories)

2. Identify relevant values
– for each characteristic (category) identify (classes of) values

• normal values
• boundary values
• special values
• error values

3. Introduce constraints

Updated Stuart Anderson from (c) 2007 Mauro Pezzè & Michal Young Ch 11, slide 523/10/2023

An informal specification:
check configuration
Check Configuration
• Check the validity of a computer configuration
• The parameters of check-configuration are:
• Model
• Set of components

Updated Stuart Anderson from (c) 2007 Mauro Pezzè & Michal Young Ch 11, slide 623/10/2023

An informal specification:
parameter model
Model
• A model identifies a specific product and determines a set of constraints on available

components. Models are characterized by logical slots for components, which may or may not be
implemented by physical slots on a bus. Slots may be required or optional. Required slots must
be assigned with a suitable component to obtain a legal configuration, while optional slots may
be left empty or filled depending on the customers' needs

Example:
 The required “slots” of the Chipmunk C20 laptop computer include a screen, a processor, a hard

disk, memory, and an operating system. (Of these, only the hard disk and memory are
implemented using actual hardware slots on a bus.) The optional slots include external storage
devices such as a CD/DVD writer.

Updated Stuart Anderson from (c) 2007 Mauro Pezzè & Michal Young Ch 11, slide 723/10/2023

An informal specification of
parameter set of components
Set of Components
• A set of (slot, component) pairs, corresponding to the required and optional slots of the model. A component

is a choice that can be varied within a model, and which is not designed to be replaced by the end user.
Available components and a default for each slot is determined by the model. The special value empty is
allowed (and may be the default selection) for optional slots. In addition to being compatible or
incompatible with a particular model and slot, individual components may be compatible or incompatible
with each other.

Example:

 The default configuration of the Chipmunk C20 includes 20 gigabytes of hard disk; 30 and 40 gigabyte disks
are also available. (Since the hard disk is a required slot, empty is not an allowed choice.) The default
operating system is RodentOS 3.2, personal edition, but RodentOS 3.2 mobile server edition may also be
selected. The mobile server edition requires at least 30 gigabytes of hard disk.

Updated Stuart Anderson from (c) 2007 Mauro Pezzè & Michal Young Ch 11, slide 823/10/2023

Step1: Identify independently testable units
and categories
• Choosing categories
• no hard-and-fast rules for choosing categories
• not a trivial task!

• Categories reflect test designer's judgment
• regarding which classes of values may be treated differently by an

implementation

• Choosing categories well requires experience and knowledge
• of the application domain and product architecture. The test designer must

look under the surface of the specification and identify hidden characteristics

Updated Stuart Anderson from (c) 2007 Mauro Pezzè & Michal Young Ch 11, slide 923/10/2023

Step 1: Identify independently testable units

Parameter Model
• Model number
• Number of required slots for selected model (#SMRS)
• Number of optional slots for selected model (#SMOS)

Parameter Components
• Correspondence of selection with model slots
• Number of required components with selection ¹ empty
• Required component selection
• Number of optional components with selection ¹ empty
• Optional component selection

Environment element: Product database
• Number of models in database (#DBM)
• Number of components in database (#DBC)

Updated Stuart Anderson from (c) 2007 Mauro Pezzè & Michal Young Ch 11, slide 1023/10/2023

Step 2: Identify relevant values

• Identify (list) representative classes of values for each of the
categories
• Ignore interactions among values for different categories (considered in the

next step)

• Representative values may be identified by applying
• Boundary value testing

• select extreme values within a class
• select values outside but as close as possible to the class
• select interior (non-extreme) values of the class

• Erroneous condition testing
• select values outside the normal domain of the program

Updated Stuart Anderson from (c) 2007 Mauro Pezzè & Michal Young Ch 11, slide 1123/10/2023

Step 2: Identify relevant values: Model

Model number
Malformed
Not in database
Valid

Number of required slots for selected model (#SMRS)
0
1
Many

Number of optional slots for selected model (#SMOS)
0
1
Many

Updated Stuart Anderson from (c) 2007 Mauro Pezzè & Michal Young Ch 11, slide 1223/10/2023

Step 2: Identify relevant values: Component

Correspondence of selection with
model slots

Omitted slots
Extra slots
Mismatched slots
Complete correspondence

Number of required components with
non empty selection

0
< number required slots
= number required slots

Required component selection
Some defaults
All valid
³ 1 incompatible with slots
³ 1 incompatible with another selection
³ 1 incompatible with model
³ 1 not in database

Number of optional components
with non empty selection

0
< #SMOS
= #SMOS

Optional component selection
Some defaults
All valid
³ 1 incompatible with slots
³ 1 incompatible with another

selection
³ 1 incompatible with model
³ 1 not in database

Updated Stuart Anderson from (c) 2007 Mauro Pezzè & Michal
Young

Ch 11, slide 1323/10/2023

Step 2: Identify relevant values: Database

Number of models in database (#DBM)
0
1
Many

Number of components in database (#DBC)
0
1
Many

Note 0 and 1 are unusual (special) values. They might cause unanticipated behavior alone or in
combination with particular values of other parameters.

Updated Stuart Anderson from (c) 2007 Mauro Pezzè & Michal Young Ch 11, slide 1423/10/2023

Step 3: Introduce constraints

• A combination of values for each category corresponds to a test case
specification
• in the example we have 314,928 test cases
• most of which are impossible!

• example
zero slots and at least one incompatible slot

• Introduce constraints to
• rule out impossible combinations
• reduce the size of the test suite if too large

Updated Stuart Anderson from (c) 2007 Mauro Pezzè & Michal Young Ch 11, slide 1523/10/2023

Step 3: error constraint

[error] indicates a value class that
• corresponds to a erroneous values
• need be tried only once

Example
 Model number: Malformed and Not in database
error value classes
• No need to test all possible combinations of errors
• One test is enough (we assume that handling an error case bypasses other

program logic)

Updated Stuart Anderson from (c) 2007 Mauro Pezzè & Michal Young Ch 11, slide 1623/10/2023

Example - Step 3: error constraint
Model number

Malformed [error]
Not in database [error]
Valid

Correspondence of selection with model slots
 Omitted slots [error]
 Extra slots [error]
 Mismatched slots [error]
 Complete correspondence
Number of required comp. with non empty selection
 0 [error]
 < number of required slots [error]
Required comp. selection
 ³ 1 not in database [error]
Number of models in database (#DBM)
 0 [error]
Number of components in database (#DBC)
 0 [error]

Updated Stuart Anderson from (c) 2007 Mauro Pezzè & Michal Young Ch 11, slide 17

Error constraints
reduce test suite
from 314,928 to
2,711 test cases

23/10/2023

Step 3: property constraints

constraint [property] [if-property] rule out invalid combinations of values
[property] groups values of a single parameter to identify subsets of values with

common properties
[if-property] bounds the choices of values for a category that can be combined

with a particular value selected for a different category
Example

combine
Number of required comp. with non empty selection = number required slots [if RSMANY]

only with

Number of required slots for selected model (#SMRS) = Many [Many]

Updated Stuart Anderson from (c) 2007 Mauro Pezzè & Michal Young Ch 11, slide 1823/10/2023

Example - Step 3: property constraints
Number of required slots for selected model (#SMRS)
 1 [property RSNE]

 Many [property RSNE] [property RSMANY]

Number of optional slots for selected model (#SMOS)
 1 [property OSNE]

 Many [property OSNE] [property OSMANY]

Number of required comp. with non empty selection
 0 [if RSNE] [error]

 < number required slots [if RSNE] [error]

 = number required slots [if RSMANY]

Number of optional comp. with non empty selection
 < number required slots [if OSNE]

 = number required slots [if OSMANY]

Updated Stuart Anderson from (c) 2007 Mauro Pezzè & Michal Young Ch 11, slide 19

from 2.711 to 908
test cases

23/10/2023

Step 3 (cont): single constraints

[single] indicates a value class that test designers choose to test only
once to reduce the number of test cases

Example:
 value some default for required component selection and optional

component selection may be tested only once despite not being an erroneous
condition

Note:
 single and error have the same effect but differ in rationale. Keeping them

distinct is important for documentation and regression testing

Updated Stuart Anderson from (c) 2007 Mauro Pezzè & Michal Young Ch 11, slide 2023/10/2023

Example - Step 3: single constraints

Number of required slots for selected model (#SMRS)
0 [single]
1 [property RSNE] [single]

Number of optional slots for selected model (#SMOS)
0 [single]
1 [single] [property OSNE]

Required component selection
Some default [single]

Optional component selection
Some default [single]

Number of models in database (#DBM)
1 [single]

Number of components in database (#DBC)
1 [single]

Updated Stuart Anderson from (c) 2007 Mauro Pezzè & Michal Young Ch 11, slide 21

from 908 to
69 test cases

23/10/2023

Check configuration – Summary
Parameter Model
• Model number

• Malformed [error]
• Not in database [error]
• Valid

• Number of required slots for selected model (#SMRS)
• 0 [single]
• 1 [property RSNE] [single]
• Many [property RSNE] [property RSMANY]

• Number of optional slots for selected model (#SMOS)
• 0 [single]
• 1 [property OSNE] [single]
• Many [property OSNE] [property OSMANY]

Environment Product data base
• Number of models in database (#DBM)

• 0 [error]
• 1 [single]
• Many

• Number of components in database (#DBC)
• 0 [error]
• 1 [single]
• Many

Parameter Component
• Correspondence of selection with model slots

• Omitted slots [error]
• Extra slots [error]
• Mismatched slots [error]
• Complete correspondence

• # of required components (selection ¹ empty)
• 0 [if RSNE] [error]
• < number required slots [if RSNE] [error]
• = number required slots [if RSMANY]

• Required component selection
• Some defaults [single]
• All valid
• ³ 1 incompatible with slots
• ³ 1 incompatible with another selection
• ³ 1 incompatible with model
• ³ 1 not in database [error]

• # of optional components (selection ¹ empty)
• 0
• < #SMOS [if OSNE]
• = #SMOS [if OSMANY]

• Optional component selection
• Some defaults [single]
• All valid
• ³ 1 incompatible with slots
• ³ 1 incompatible with another selection
• ³ 1 incompatible with model
• ³ 1 not in database [error]

Updated Stuart Anderson from (c) 2007 Mauro Pezzè & Michal
Young

Ch 11, slide 2223/10/2023

Next ...

• Category partition testing gave us
• Systematic approach: Identify characteristics and values (the creative step),

generate combinations (the mechanical step)

• But ...
• Test suite size grows very rapidly with number of categories. Can we use a

non-exhaustive approach?

• Pairwise (and n-way) combinatorial testing do
• Combine values systematically but not exhaustively
• Rationale: Most unplanned interactions are among just two or a few

parameters or parameter characteristics

Updated Stuart Anderson from (c) 2007 Mauro Pezzè & Michal Young Ch 11, slide 2323/10/2023

Pairwise combinatorial testing

• Category partition works well when intuitive constraints reduce the
number of combinations to a small amount of test cases
• Without many constraints, the number of combinations may be

unmanageable

• Pairwise combination (instead of exhaustive)
• Generate combinations that efficiently cover all pairs (triples,…) of classes
• Rationale: most failures are triggered by single values or combinations of a

few values. Covering pairs (triples,…) reduces the number of test cases, but
reveals most faults

23/10/2023 Updated Stuart Anderson from (c) 2007 Mauro Pezzè & Michal Young Ch 11, slide 24

Example: Display Control

Display Mode Language Fonts Color Screen size

full-graphics English Minimal Monochrome Hand-held

text-only French Standard Color-map Laptop

limited-bandwidth Spanish Document-
loaded

16-bit Full-size

Portuguese True-color

Updated Stuart Anderson from (c) 2007 Mauro Pezzè & Michal Young Ch 11, slide 25

The total number of combinations is (3x4x3x4x3)=432 test cases
If we consider all combinations

Covering all Pairwise Combinations

• All pairs of classes.
• This need not result in

multiplicative increase
• BUT, it is hard to do manually for

more than a few classes.

23/10/2023 Updated Stuart Anderson from (c) 2007 Mauro Pezzè & Michal
Young

Ch 11, slide 26

Pairwise combinations: 17 test cases

Updated Stuart Anderson from (c) 2007 Mauro Pezzè & Michal Young Ch 11, slide 27

Adding constraints

• Simple constraints
 example: color monochrome not compatible with screen laptop and

full size
 can be handled by considering the case in separate tables

Updated Stuart Anderson from (c) 2007 Mauro Pezzè & Michal Young Ch 11, slide 2823/10/2023

Example: Monochrome only with hand-held

Updated Stuart Anderson from (c) 2007 Mauro Pezzè & Michal
Young

Ch 11, slide 29

Display Mode Language Fonts Color Screen size
full-graphics English Minimal
text-only French Standard Color-map Laptop
limited-
bandwidth

Spanish Document-
loaded

16-bit Full-size

Portuguese True-color

Display Mode Language Fonts Color Screen size
full-graphics English Minimal Monochrome Hand-held
text-only French Standard Color-map
limited-
bandwidth

Spanish Document-
loaded

16-bit

Portuguese True-color

23/10/2023

Next ...

• Category-partition approach gives us ...
• Separation between (manual) identification of parameter characteristics and

values and (automatic) generation of test cases that combine them
• Constraints to reduce the number of combinations

• Pairwise (or n-way) testing gives us ...
• Much smaller test suites, even without constraints

• (but we can still use constraints)

• We still need ...
• Help to make the manual step more systematic

Updated Stuart Anderson from (c) 2007 Mauro Pezzè & Michal Young Ch 11, slide 3023/10/2023

Catalog based testing

• Deriving value classes requires human judgment
• Gathering experience in a systematic collection can:

• speed up the test design process
• routinize many decisions, better focusing human effort
• accelerate training and reduce human error

• Catalogs capture the experience of test designers by listing important cases for each
possible type of variable
• Example: if the computation uses an integer variable a catalog might indicate the following

relevant cases
• The element immediately preceding the lower bound
• The lower bound of the interval
• A non-boundary element within the interval
• The upper bound of the interval
• The element immediately following the upper bound

23/10/2023 Updated Stuart Anderson from (c) 2007 Mauro Pezzè & Michal Young Ch 11, slide 31

Catalog based testing process

Step1:
Analyze the initial specification to identify simple elements:

• Pre-conditions
• Post-conditions
• Definitions
• Variables
• Operations

Step 2:
Derive a first set of test case specifications from pre-conditions, post-conditions and definitions

Step 3:
Complete the set of test case specifications using test catalogs

Updated Stuart Anderson from (c) 2007 Mauro Pezzè & Michal Young Ch 11, slide 3223/10/2023

An informal specification: cgi_decode

• Function cgi_decode translates a cgi-encoded string to a plain ASCII string,
reversing the encoding applied by the common gateway interface (CGI) of most
web servers
• CGI translates spaces to +, and translates most other non-alphanumeric

characters to hexadecimal escape sequences
• cgi_decode maps + to spaces, %xy (where x and y are hexadecimal digits) to

the corresponding ASCII character, and other alphanumeric characters to
themselves

23/10/2023 Updated Stuart Anderson from (c) 2007 Mauro Pezzè & Michal Young Ch 11, slide 33

An informal specification: input/output

[INPUT] encoded: string of characters (the input CGI sequence)
 can contain:

• alphanumeric characters
• the character +
• the substring %xy, where x and y are hexadecimal digits
is terminated by a null character

[OUTPUT] decoded: string of characters (the plain ASCII characters corresponding to the input CGI
sequence)

• alphanumeric characters copied into output (in corresponding positions)
• blank for each + character in the input
• single ASCII character with value xy for each substring %xy

[OUTPUT] return value: cgi_decode returns
• 0 for success
• 1 if the input is malformed

Updated Stuart Anderson from (c) 2007 Mauro Pezzè & Michal Young Ch 11, slide 3423/10/2023

Step 1: Identify simple elements

Pre-conditions: conditions on inputs that must be true before the
execution
• validated preconditions: checked by the system
• assumed preconditions: assumed by the system

Post-conditions: results of the execution
Variables: elements used for the computation
Operations: main operations on variables and inputs
Definitions: abbreviations

23/10/2023 Updated Stuart Anderson from (c) 2007 Mauro Pezzè & Michal Young Ch 11, slide 35

Step 1: cgi_decode (pre and post)

PRE 1 (Assumed) input string encoded null-terminated string of chars
PRE 2 (Validated) input string encoded sequence of CGI items

POST 1 if encoded contains alphanumeric characters, they are copied to the output string
POST 2 if encoded contains characters +, they are replaced in the output string by ASCII SPACE

characters

POST 3 if encoded contains CGI hexadecimals, they are replaced by the corresponding ASCII
characters

POST 4 if encoded is processed correctly, it returns 0
POST 5 if encoded contains a wrong CGI hexadecimal (a substring xy, where either x or y are

absent or are not hexadecimal digits, cgi_decode returns 1

POST 6 if encoded contains any illegal character, it returns 1

Updated Stuart Anderson from (c) 2007 Mauro Pezzè & Michal Young Ch 11, slide 3623/10/2023

Step 1: cgi_decode (var, def, op.)

VAR 1 encoded: a string of ASCII characters
VAR 2 decoded: a string of ASCII characters

VAR 3 return value: a boolean
DEF 1 hexadecimal characters, in range ['0' .. '9', 'A' .. 'F', 'a' .. 'f']

DEF 2 sequences %xy, where x and y are hexadecimal characters

DEF 3 CGI items as alphanumeric character, or '+', or CGI hexadecimal
OP 1 Scan encoded

Updated Stuart Anderson from (c) 2007 Mauro Pezzè & Michal Young Ch 11, slide 3723/10/2023

Step 2: Derive initial set of test case specs

• Validated preconditions:
• simple precondition (expression without operators)

• 2 classes of inputs:
• inputs that satisfy the precondition
• inputs that do not satisfy the precondition

• compound precondition (with AND or OR):
• apply modified condition/decision (MC/DC) criterion

• Assumed precondition:
• apply MC/DC only to “OR preconditions”

• Postconditions and Definitions :
• if given as conditional expressions, consider conditions as if they were validated

preconditions

23/10/2023 Updated Stuart Anderson from (c) 2007 Mauro Pezzè & Michal Young Ch 11, slide 38

Step 2: cgi_decode (tests from Pre)

• PRE 2 (Validated) the input string encoded is a sequence of CGI items
• TC-PRE2-1: encoded is a sequence of CGI items
• TC-PRE2-2: encoded is not a sequence of CGI items

• POST 1 if encoded contains alphanumeric characters, they are copied in the output string in the
corresponding position

• TC-POST1-1: encoded contains alphanumeric characters
• TC-POST1-2: encoded does not contain alphanumeric characters

• POST 2 if encoded contains characters +, they are replaced in the output string by ASCII SPACE
characters

• TC-POST2-1: encoded contains character +
• TC-POST2-2: encoded does not contain character +

23/10/2023 Updated Stuart Anderson from (c) 2007 Mauro Pezzè & Michal Young Ch 11, slide 39

Step 2: cgi_decode (tests from Post)

• POST 3 if encoded contains CGI hexadecimals, they are replaced by the corresponding ASCII
characters

• TC-POST3-1 Encoded: contains CGI hexadecimals
• TC-POST3-2 Encoded: does not contain a CGI hexadecimal

• POST 4 if encoded is processed correctly, it returns 0
• POST 5 if encoded contains a wrong CGI hexadecimal (a substring xy, where either x or y are

absent or are not hexadecimal digits, cgi_decode returns 1
• TC-POST5-1 Encoded: contains erroneous CGI hexadecimals

• POST 6 if encoded contains any illegal character, it returns 1
• TC-POST6-1 Encoded: contains illegal characters

23/10/2023 Updated Stuart Anderson from (c) 2007 Mauro Pezzè & Michal Young Ch 11, slide 40

Step 2: cgi_decode (tests from Var)

VAR 1 encoded: a string of ASCII characters
VAR 2 decoded: a string of ASCII characters

VAR 3 return value: a boolean
DEF 1 hexadecimal characters, in range ['0' .. '9', 'A' .. 'F', 'a' .. 'f']

DEF 2 sequences %xy, where x and y are hexadecimal characters

DEF 3 CGI items as alphanumeric character, or '+', or CGI hexadecimal

OP 1 Scan encoded

23/10/2023 Updated Stuart Anderson from (c) 2007 Mauro Pezzè & Michal Young Ch 11, slide 41

Step 3: Apply the catalog

• Scan the catalog sequentially
• For each element of the catalog

• scan the specifications
• apply the catalog entry

• Delete redundant test cases
• Catalog:

• List of kinds of elements that can occur in a specification
• Each catalog entry is associated with a list of generic test case specifications
Example:
catalog entry Boolean
two test case specifications: true, false
Label in/out indicate if applicable only to input, output, both

Updated Stuart Anderson from (c) 2007 Mauro Pezzè & Michal Young Ch 11, slide 4223/10/2023

A simple catalog (part I)
• Boolean

• True in/out
• False in/out

• Enumeration
• Each enumerated value in/out
• Some value outside the enumerated set in

• Range L ... U
• L-1 in
• L in/out
• A value between L and U in/out
• U in/out
• U+1 in

• Numeric Constant C
• C in/out
• C –1 in
• C+1 in
• Any other constant compatible with C in

Updated Stuart Anderson from (c) 2007 Mauro Pezzè & Michal Young Ch 11, slide 4323/10/2023

A simple catalog (part II)
• Non-Numeric Constant C

• C in/out
• Any other constant compatible with C in
• Some other compatible value in

• Sequence
• Empty in/out
• A single element in/out
• More than one element in/out
• Maximum length (if bounded) or very long in/out
• Longer than maximum length (if bounded) in
• Incorrectly terminated in

• Scan with action on elements P
• P occurs at beginning of sequence in
• P occurs in interior of sequence in
• P occurs at end of sequence in
• PP occurs contiguously in
• P does not occur in sequence in
• pP where p is a proper prefix of P in
• Proper prefix p occurs at end of sequence in

Updated Stuart Anderson from (c) 2007 Mauro Pezzè & Michal Young Ch 11, slide 4423/10/2023

Example - Step 3: Catalog entry boolean

• Boolean
• True in/out
• False in/out

• applies to return value
• generates 2 test cases already covered by TC-PRE2-1 and TC-PRE2-2

23/10/2023 Updated Stuart Anderson from (c) 2007 Mauro Pezzè & Michal Young Ch 11, slide 45

Example - Step 3: entry enumeration

• Enumeration
• Each enumerated value in/out
• Some value outside the enumerated set in

applies to
• CGI item (DEF 3)
 included in TC-POST1-1, TC-POST1-2, TC-POST2-1, TC-
POST2-2, TC-POST3-1, TC-POST3-2

Updated Stuart Anderson from (c) 2007 Mauro Pezzè & Michal Young Ch 11, slide 4623/10/2023

Example - Step 3: entry enumeration

applies also to improper CGI hexadecimals
• New test case specifications

• TC-POST5-2 encoded terminated with %x, where x is a hexadecimal digit
• TC-POST5-3 encoded contains %ky, where k is not a hexadecimal digit and y is a

hexadecimal digit
• TC-POST5-4 encoded contains %xk, where x is a hexadecimal digit and k is not

• Old test case specifications can be eliminated if they are less specific than the
newly generated cases

• TC-POST3-1 encoded contains CGI hexadecimals
• TC-POST5-1 encoded contains erroneous CGI hexadecimals

23/10/2023 Updated Stuart Anderson from (c) 2007 Mauro Pezzè & Michal Young Ch 11, slide 47

Example - Step 3: entry range

Applies to variables defined on a finite range
• hexadecimal digit
• characters / and :

(before 0 and after 9 in the ASCII table)
• values 0 and 9 (bounds),
• one value between 0 and 9
• @, G, A, F, one value between A and F
• }, g, a, f, one value between a and f
• 30 new test cases (15 for each character)

• Alphanumeric char (DEF 3):
• 5 new test cases

23/10/2023 Updated Stuart Anderson from (c) 2007 Mauro Pezzè & Michal Young Ch 11, slide 48

Example - Step 3: entries
numeric and non-numeric constant

Numeric Constant does not apply
Non-Numeric Constant applies to

+ and %, in DEF 3 and DEF 2:
• 6 new Test Cases (all redundant)

Updated Stuart Anderson from (c) 2007 Mauro Pezzè & Michal Young Ch 11, slide 4923/10/2023

Step 3: entry sequence
apply to
encoded (VAR 1), decoded (VAR 2), and cgi-item (DEF 2)
• 6 new Test Cases for each variable
• Only 6 are non-redundant:
• encoded

• empty sequence
• sequence of length one
• long sequence

• cgi-item
• % terminated sequence (subsequence with one char)
• % initiated sequence
• sequence including %xyz, with x, y, and z hexadecimals

Updated Stuart Anderson from (c) 2007 Mauro Pezzè & Michal Young Ch 11, slide 5023/10/2023

Step 3: entry scan

applies to Scan encoded (OP 1) and generates 17 test cases:
• only 10 are non-redundant

Updated Stuart Anderson from (c) 2007 Mauro Pezzè & Michal Young Ch 11, slide 5123/10/2023

summary of generated test cases (i/ii)
TC-POST2-1: encoded contains +
TC-POST2-2: encoded does not contain +

TC-POST3-2: encoded does not contain a CGI-hexadecimal

TC-POST5-2: encoded terminated with %x
TC-VAR1-1: encoded is the empty sequence

TC-VAR1-2: encoded a sequence containing a single character

TC-VAR1-3: encoded is a very long sequence

TC-DEF2-1: encoded contains %/y
TC-DEF2-2: encoded contains %0y
TC-DEF2-3: encoded contains '%xy' (x in [1..8])

TC-DEF2-4: encoded contains '%9y'
TC-DEF2-5: encoded contains '%:y'
TC-DEF2-6: encoded contains '%@y‘
TC-DEF2-7: encoded contains '%Ay'
TC-DEF2-8: encoded contains '%xy' (x in [B..E])

TC-DEF2-9: encoded contains '%Fy'
TC-DEF2-10: encoded contains '%Gy'

TC-DEF2-11: encoded contains %`y'
TC-DEF2-12: encoded contains %ay
TC-DEF2-13: encoded contains %xy (x in [b..e])

TC-DEF2-14: encoded contains %fy'
TC-DEF2-15: encoded contains %gy
TC-DEF2-16: encoded contains %x/
TC-DEF2-17: encoded contains %x0
TC-DEF2-18: encoded contains %xy (y in [1..8])

TC-DEF2-19: encoded contains %x9
TC-DEF2-20: encoded contains %x:
TC-DEF2-21: encoded contains %x@
TC-DEF2-22: encoded contains %xA
TC-DEF2-23: encoded contains %xy(y in [B..E])

TC-DEF2-24: encoded contains %xF
TC-DEF2-25: encoded contains %xG
TC-DEF2-26: encoded contains %x`
TC-DEF2-27: encoded contains %xa
TC-DEF2-28: encoded contains %xy (y in [b..e])

TC-DEF2-29: encoded contains %xf

Updated Stuart Anderson from (c) 2007 Mauro Pezzè & Michal
Young

Ch 11, slide 5223/10/2023

Summary of generated test cases (ii/ii)
TC-DEF2-30: encoded contains %xg
TC-DEF2-31: encoded terminates with %
TC-DEF2-32: encoded contains %xyz
TC-DEF3-1: encoded contains /
TC-DEF3-2: encoded contains 0
TC-DEF3-3: encoded contains c in [1..8]
TC-DEF3-4: encoded contains 9
TC-DEF3-5: encoded contains :
TC-DEF3-6: encoded contains @
TC-DEF3-7: encoded contains A
TC-DEF3-8: encoded contains c in[B..Y]
TC-DEF3-9: encoded contains Z
TC-DEF3-10: encoded contains [
TC-DEF3-11: encoded contains`
TC-DEF3-12: encoded contains a
TC-DEF3-13: encoded contains c in [b..y]
TC-DEF3-14: encoded contains z
TC-DEF3-15: encoded contains {

TC-OP1-1: encoded starts with an alphanumeric
character

TC-OP1-2: encoded starts with +
TC-OP1-3: encoded starts with %xy
TC-OP1-4: encoded terminates with an

alphanumeric character
TC-OP1-5: encoded terminates with +
TC-OP1-6: encoded terminated with %xy
TC-OP1-7: encoded contains two consecutive

alphanumeric characters
TC-OP1-8: encoded contains ++
TC-OP1-9: encoded contains %xy%zw
TC-OP1-10: encoded contains %x%yz

Updated Stuart Anderson from (c) 2007 Mauro Pezzè & Michal
Young

Ch 11, slide 5323/10/2023

What have we got?

• From category partition testing:
• Division into a (manual) step of identifying categories and values, with

constraints, and an (automated) step of generating combinations

• From catalog based testing:
• Improving the manual step by recording and using standard patterns for

identifying significant values

• From pairwise testing:
• Systematic generation of smaller test suites

• These ideas can be combined

Updated Stuart Anderson from (c) 2007 Mauro Pezzè & Michal Young Ch 11, slide 5423/10/2023

Summary

• Requirements specifications typically begin in the form of natural language statements
• but flexibility and expressiveness of natural language is an obstacle to automatic analysis

• Combinatorial approaches to functional testing consist of
• A manual step of structuring specifications into set of properties
• An automatizable step of producing combinations of choices

• Brute force synthesis of test cases is tedious and error prone
• Combinatorial approaches decompose brute force’ work into steps to attack the problem

incrementally by separating analysis and synthesis activities that can be quantified and
monitored, and partially supported by tools

Updated Stuart Anderson from (c) 2007 Mauro Pezzè & Michal Young Ch 11, slide 5523/10/2023

