
Updated from (c) 2007 Mauro Pezzè & Michal Young Ch 12, slide 1

Structural Testing

Updated from (c) 2007 Mauro Pezzè & Michal Young Ch 12, slide 2

Learning objectives
• Be able to explain rationale for structural testing

– Be able to illustrate how structural (code-based or glass-box) testing
complements functional (black-box) testing

• Recognize and distinguish basic terms
– Adequacy, coverage

• Recognize and distinguish characteristics of common structural
criteria

• Be able to explain practical uses and limitations of structural
testing

Updated from (c) 2007 Mauro Pezzè & Michal Young Ch 12, slide 3

“Structural” testing
• Judging test suite thoroughness based on the structure of the

program itself
– Also known as “white-box”, “glass-box”, or “code-based” testing
– To distinguish from functional (requirements-based, “black-box” testing)

– “Structural” testing is still testing product functionality against its specification. Only
the measure of thoroughness has changed.

Updated from (c) 2007 Mauro Pezzè & Michal Young Ch 12, slide 4

Why structural (code-based) testing?
• One way of answering the question “What is missing in our test

suite?”
– If part of a program is not executed by any test case in the suite, faults

in that part cannot be exposed
– But what’s a “part”?

• Typically, a control flow element or combination:
• Statements (or CFG nodes), Branches (or CFG edges)
• Fragments and combinations: Conditions, paths

• Complements functional testing: Another way to recognize cases
that are treated differently
– Recall fundamental rationale: Prefer test cases that are treated

differently over cases treated the same

Updated from (c) 2007 Mauro Pezzè & Michal Young Ch 12, slide 5

No guarantees
• Executing all control flow elements does not guarantee finding

all faults
– Execution of a faulty statement may not always result in a failure

• The state may not be corrupted when the statement is executed with some data
values

• Corrupt state may not propagate through execution to eventually lead to failure

• What is the value of structural coverage?
– Increases confidence in thoroughness of testing

• Removes some obvious inadequacies

• It may be that structural criteria are not well matched with the
context of use (and we expend effort on problems that never
manifest in our context).

Updated from (c) 2007 Mauro Pezzè & Michal Young Ch 12, slide 6

Structural testing complements
functional testing

• Control flow testing includes cases that may not be identified
from specifications alone
– Typical case: implementation of a single item of the specification by

multiple parts of the program
– Example: hash table collision (invisible in interface spec)

• Test suites that satisfy control flow adequacy criteria could fail
in revealing faults that can be caught with functional criteria
– Typical case: missing path faults

Updated from (c) 2007 Mauro Pezzè & Michal Young Ch 12, slide 7

Structural testing in practice
• Create functional test suite first, then measure structural coverage to

identify see what is missing
• Interpret unexecuted elements

– may be due to natural differences between specification and implementation
– or may reveal flaws of the software or its development process

• inadequacy of specifications that do not include cases present in the implementation
• coding practice that radically diverges from the specification
• inadequate functional test suites

• Attractive because automated
– coverage measurements are convenient progress indicators
– sometimes used as a criterion of completion

• use with caution: does not ensure effective test suites

Updated from (c) 2007 Mauro Pezzè & Michal Young Ch 12, slide 8

Statement testing
• Adequacy criterion: each statement (or node in the CFG) must

be executed at least once
• Coverage:
 # executed statements
 # statements
• Rationale: a fault in a statement can only be revealed by

executing the faulty statement

Updated from (c) 2007 Mauro Pezzè & Michal Young Ch 12, slide 9

Statements or blocks?
• Nodes in a control flow graph often represent basic blocks of

multiple statements
– Some standards refer to basic block coverage or node coverage
– Difference in granularity, not in concept

• No essential difference
– 100% node coverage <-> 100% statement coverage

• but levels will differ below 100%

– A test case that improves one will improve the other
• though not by the same amount, in general

Updated from (c) 2007 Mauro Pezzè & Michal Young Ch 12, slide 10

Example
 {char *eptr = encoded ;

char *dptr = decoded ;
int ok = 0;

char c ;
c = *eptr ;
if (c == '+') {

*dptr = ' ';
}

while (*eptr) {
True

*dptr = '\0';
return ok ;
}

False

True

int digit _high = Hex_Values [*(++eptr)];
int digit _low = Hex_Values [*(++eptr)];
if (digit_high == -1 || digit_low == -1) {

True

ok = 1;
}

True

else {
*dptr = 16 * digit_high +
digit_low;
}

False

++dptr;
++eptr;
}

False

False

 elseif (c == '%') {

else
*dptr = *eptr ;
}

int cgi_decode (char *encoded , char *decoded)

A

C

B

D E

F G

H I

LM

T0 =
{“”, “test”,
“test+case%1Dadequacy”}
17/18 = 94% Stmt Cov.

T1 =
{“adequate+test%0Dexecution%7U”}
18/18 = 100% Stmt Cov.

T2 =
{“%3D”, “%A”, “a+b”,
“test”}
18/18 = 100% Stmt Cov.

Updated from (c) 2007 Mauro Pezzè & Michal Young Ch 12, slide 11

Coverage is not size
• Coverage does not depend on the number of test cases

– T0 , T1 : T1 >coverage T0 T1 <cardinality T0

– T1 , T2 : T2 =coverage T1 T2 >cardinality T1

• Minimizing test suite size is seldom the goal
– small test cases make failure diagnosis easier
– a failing test case in T2 gives more information for fault localization than

a failing test case in T1

Updated from (c) 2007 Mauro Pezzè & Michal Young Ch 12, slide 12

“All statements” can miss some cases
 {char *eptr = encoded ;

char *dptr = decoded ;
int ok = 0;

char c ;
c = *eptr ;
if (c == '+') {

*dptr = ' ';
}

while (*eptr) {
True

*dptr = '\0';
return ok ;
}

False

True

int digit_high = Hex_Values [*(++eptr)];
int digit_low = Hex_Values [*(++eptr)];
if (digit_high == -1 || digit_low == -1) {

True

ok = 1;
}

True

else {
*dptr = 16 * digit_high +
digit_low;
}

False

++dptr;
++eptr;
}

False

False

 elseif (c == '%') {

else {
*dptr = *eptr ;
}

int cgi_decode (char *encoded , char *decoded)

A

C

B

D E

F G

H I

LM

• Complete statement coverage may not
imply executing all branches in a program

• Example:
– Suppose block F were missing
– Statement adequacy would not require

false branch from D to L
T3 =
{“”, “+%0D+%4J”}
100% Stmt Cov.
No false branch from D

Updated from (c) 2007 Mauro Pezzè & Michal Young Ch 12, slide 13

Branch testing
• Adequacy criterion: each branch (edge in the CFG) must be

executed at least once
• Coverage:
 # executed branches
 # branches

T3 = {“”, “+%0D+%4J”}
100% Stmt Cov. 88% Branch Cov. (7/8 branches)

T2 = {“%3D”, “%A”, “a+b”, “test”}
100% Stmt Cov. 100% Branch Cov. (8/8 branches)

Updated from (c) 2007 Mauro Pezzè & Michal Young Ch 12, slide 14

Statements vs branches
• Traversing all edges of a graph causes all nodes to be visited

– So, test suites that satisfy the branch adequacy criterion for a program P
also satisfy the statement adequacy criterion for the same program

• The converse is not true (see T3)
– A statement-adequate (or node-adequate) test suite may not be branch-

adequate (edge-adequate)

Updated from (c) 2007 Mauro Pezzè & Michal Young Ch 12, slide 15

“All branches” can still miss conditions
• Sample fault: missing operator (negation)
 digit_high == 1 || digit_low == -1
• Branch adequacy criterion can be satisfied by varying only

digit_low
– The faulty sub-expression might never determine the result
– We might never really test the faulty condition, even though we tested

both outcomes of the branch

Updated from (c) 2007 Mauro Pezzè & Michal Young Ch 12, slide 16

Condition testing
• Branch coverage exposes faults in how a computation has been

decomposed into cases
– intuitively attractive: check the programmer’s case analysis
– but only roughly: groups cases with the same outcome

• Condition coverage considers case analysis in more detail
– also individual conditions in a compound Boolean expression

• e.g., both parts of digit_high == 1 || digit_low == -1

Basic condition testing
• Adequacy criterion: each basic condition must be executed at

least once
• Coverage:

truth values taken by all basic conditions
 2 * # basic conditions

Updated from (c) 2007 Mauro Pezzè & Michal Young Ch 12, slide 17

Updated from (c) 2007 Mauro Pezzè & Michal Young Ch 12, slide 18

Basic conditions vs branches
• Basic condition adequacy criterion can be satisfied without

satisfying branch coverage

T4 = {“first+test%9Ktest%K9”}
 satisfies basic condition adequacy
 does not satisfy branch condition adequacy

Branch and basic condition are not comparable
 (neither implies the other)

Updated from (c) 2007 Mauro Pezzè & Michal Young Ch 12, slide 19

Covering branches and conditions
• Branch and condition adequacy:

– cover all conditions and all decisions
• Compound condition adequacy:

– Cover all possible evaluations of compound conditions
– Cover all branches of a decision tree

digit_high == -1

digit_low == 1

true false

FALSE

TRUE

true false

FALSE

Updated from (c) 2007 Mauro Pezzè & Michal Young Ch 12, slide 20

Compound conditions:
Exponential complexity

(((a || b) && c) || d) && e

 Test a b c d e
 Case
 (1) T — T — T
 (2) F T T — T
 (3) T — F T T
 (4) F T F T T
 (5) F F — T T
 (6) T — T — F
 (7) F T T — F
 (8) T — F T F
 (9) F T F T F
 (10) F F — T F
 (11) T — F F —
 (12) F T F F —
 (13) F F — F —

•short-circuit evaluation often reduces this to a more manageable
number, but not always

Updated from (c) 2007 Mauro Pezzè & Michal Young Ch 12, slide 21

Modified condition/decision (MC/DC)
• Motivation: Effectively test important combinations of

conditions, without exponential blowup in test suite size
– “Important” combinations means: Each basic condition shown to

independently affect the outcome of each decision
• Requires:

– For each basic condition C, two test cases,
– values of all evaluated conditions except C are the same
– compound condition as a whole evaluates to true for one and false for

the other

Updated from (c) 2007 Mauro Pezzè & Michal Young Ch 12, slide 22

MC/DC: linear complexity
• N+1 test cases for N basic conditions

(((a || b) && c) || d) && e

 Test a b c d e outcome
 Case
 (1) true -- true -- true true
 (2) false true true -- true true
 (3) true -- false true true true
 (6) true -- true -- false false
 (11) true -- false false -- false
 (13) false false -- false -- false

• Underlined values independently affect the output of the decision
• Required by the RTCA/DO-178B standard

Updated from (c) 2007 Mauro Pezzè & Michal Young Ch 12, slide 23

Comments on MC/DC
• MC/DC is

– basic condition coverage (C)
– branch coverage (DC)
– plus one additional condition (M):

every condition must independently affect the decision’s output
• It is subsumed by compound conditions and subsumes all other

criteria discussed so far
– stronger than statement and branch coverage

• A good balance of thoroughness and test size (and therefore
widely used)

Updated from (c) 2007 Mauro Pezzè & Michal Young Ch 12, slide 24

Paths? (Beyond individual branches)
• Should we explore sequences of

branches (paths) in the control
flow?

• Many more paths than branches
– A pragmatic compromise will be

needed

Updated from (c) 2007 Mauro Pezzè & Michal Young Ch 12, slide 25

Path adequacy
• Decision and condition adequacy criteria consider individual

program decisions
• Path testing focuses consider combinations of decisions along

paths
• Adequacy criterion: each path must be executed at least once
• Coverage:
 # executed paths
 # paths

Updated from (c) 2007 Mauro Pezzè & Michal Young Ch 12, slide 26

Practical path coverage criteria
• The number of paths in a program with loops is unbounded

– the simple criterion is usually impossible to satisfy

• For a feasible criterion: Partition infinite set of paths into a
finite number of classes

• Useful criteria can be obtained by limiting
– the number of traversals of loops
– the length of the paths to be traversed
– the dependencies among selected paths

Updated from (c) 2007 Mauro Pezzè & Michal Young Ch 12, slide 27

Boundary interior path testing
• Group together paths that differ only in the subpath they follow

when repeating the body of a loop
– Follow each path in the control flow graph up to the first repeated node
– The set of paths from the root of the tree to each leaf is the required

set of subpaths for boundary/interior coverage

Updated from (c) 2007 Mauro Pezzè & Michal Young Ch 12, slide 28

Boundary interior adequacy for cgi-decode

Updated from (c) 2007 Mauro Pezzè & Michal Young Ch 12, slide 29

Limitations of boundary interior adequacy

• The number of paths can still grow exponentially

if (a) {
 S1;
}
if (b) {
 S2;
}
if (c) {
 S3;
}
...
if (x) {
 Sn;
}

• The subpaths through this control
flow can include or exclude each of
the statements Si, so that in total N
branches result in 2N paths that
must be traversed

• Choosing input data to force
execution of one particular path
may be very difficult, or even
impossible if the conditions are not
independent

Updated from (c) 2007 Mauro Pezzè & Michal Young Ch 12, slide 30

Loop boundary adequacy
• Variant of the boundary/interior criterion that treats loop boundaries

similarly but is less stringent with respect to other differences among paths
• Criterion: A test suite satisfies the loop boundary adequacy criterion iff for

every loop:
– In at least one test case, the loop body is iterated zero times
– In at least one test case, the loop body is iterated once
– In at least one test case, the loop body is iterated more than once

• Corresponds to the cases that would be considered in a formal correctness
proof for the loop

Updated from (c) 2007 Mauro Pezzè & Michal Young Ch 12, slide 31

LCSAJ adequacy
• Linear Code Sequence And Jumps:

sequential subpath in the CFG starting and ending in a branch
– TER1 = statement coverage
– TER2 = branch coverage
– TERn+2 = coverage of n consecutive LCSAJs

Updated from (c) 2007 Mauro Pezzè & Michal Young Ch 12, slide 32

Cyclomatic adequacy
• Cyclomatic number:

number of independent paths in the CFG
– A path is representable as a bit vector, where each component of the vector

represents an edge
– “Dependence” is ordinary linear dependence between (bit) vectors

• If e = #edges, n = #nodes, c = #connected components of a graph, it is:
– e - n + c for an arbitrary graph
– e - n + 2 for a CFG

• Cyclomatic coverage counts the number of independent paths that have
been exercised, relative to cyclomatic complexity

Updated from (c) 2007 Mauro Pezzè & Michal Young Ch 12, slide 33

Towards procedure call testing
• The criteria considered to this point measure coverage of control

flow within individual procedures.
– not well suited to integration or system testing

• Choose a coverage granularity commensurate with the
granularity of testing
– if unit testing has been effective, then faults that remain to be found in

integration testing will be primarily interface faults, and testing effort
should focus on interfaces between units rather than their internal
details

Updated from (c) 2007 Mauro Pezzè & Michal Young Ch 12, slide 34

Procedure call testing

• Procedure entry and exit testing
– procedure may have multiple entry points (e.g., Fortran) and multiple

exit points

• Call coverage
– The same entry point may be called from many points

Updated from (c) 2007 Mauro Pezzè & Michal Young Ch 12, slide 35

Subsumption relation
Path Testing

Boundary interior testing Compound condition testing

Cyclomatic testing

LCSAJ testing

MC/DC testing

Branch and condition testing

Basic condition testing

Branch testing

Statement testingLoop boundary testing

T
H

E
O

R
E

T
IC

A
L
 C

R
IT

E
R

IA
P

R
A

C
T

IC
A

L
 C

R
IT

E
R

IA

Updated from (c) 2007 Mauro Pezzè & Michal Young Ch 12, slide 36

Satisfying structural criteria
• Sometimes criteria may not be satisfiable

– The criterion requires execution of
• statements that cannot be executed as a result of

– defensive programming
– code reuse (reusing code that is more general than strictly required for the application)

• conditions that cannot be satisfied as a result of
– interdependent conditions

• paths that cannot be executed as a result of
– interdependent decisions

Updated from (c) 2007 Mauro Pezzè & Michal Young Ch 12, slide 37

Satisfying structural criteria
• Large amounts of fossil code may indicate serious

maintainability problems
– But some unreachable code is common even in well-designed, well-

maintained systems

• Solutions:
– make allowances by setting a coverage goal less than 100%
– require justification of elements left uncovered

• RTCA-DO-178B and EUROCAE ED-12B for modified MC/DC

Updated from (c) 2007 Mauro Pezzè & Michal Young Ch 12, slide 38

Summary
• We defined a number of adequacy criteria

– NOT test design techniques!
• Different criteria address different classes of errors
• Full coverage is usually unattainable

– Remember that attainability is an undecidable problem!

• …and when attainable, “inversion” is usually hard
– How do I find program inputs allowing to cover something buried deeply in the CFG?
– Automated support (e.g., symbolic execution) may be necessary

• Therefore, rather than requiring full adequacy, the “degree of adequacy”
of a test suite is estimated by coverage measures

– May drive test improvement

