
Model based testing

(c) 2007 Mauro Pezzè & Michal Young Ch 14, slide 1

Learning Objectives

• Be able to explain the role of models in devising test cases
• Principles underlying functional and structural test adequacy criteria, as well as model-

based testing

• Explain some examples of model-based testing techniques
• A few of the most common model-based techniques, representative of many others

• Be able to explain, devise and refine other model-based testing
techniques

• Grasp the basic approach and rationale well enough to apply it in other contexts

(c) 2007 Mauro Pezzè & Michal Young Ch 14, slide 2

Why model-based testing?

• Models used in specification or design have structure
• Useful information for selecting representative classes of behavior; behaviors that are

treated differently with respect to the model should be tried by a thorough test suite
• In combinatorial testing, it is difficult to capture that structure clearly and correctly in

constraints

• We can devise test cases to check actual behavior against behavior
specified by the model

• “Coverage” similar to structural testing, but applied to specification and design models
• Structural coverage is coverage of code while model coverage is coverage of the

(abstracted) behaviour.

(c) 2007 Mauro Pezzè & Michal Young Ch 14, slide 3

Deriving test cases from finite state
machines

A common kind of model for describing
behavior that depends on sequences of
events or stimuli
Example: UML state diagrams

(c) 2007 Mauro Pezzè & Michal Young Ch 14, slide 4

From an informal specification…
Maintenance: The Maintenance function records the history of items undergoing maintenance.

 If the product is covered by warranty or maintenance contract, maintenance can be requested either by
calling the maintenance toll free number, or through the web site, or by bringing the item to a
designated maintenance station.

 If the maintenance is requested by phone or web site and the customer is a US or EU resident, the item
is picked up at the customer site, otherwise, the customer shall ship the item with an express courier.

 If the maintenance contract number provided by the customer is not valid, the item follows the
procedure for items not covered by warranty.

 If the product is not covered by warranty or maintenance contract, maintenance can be requested only
by bringing the item to a maintenance station. The maintenance station informs the customer of the
estimated costs for repair. Maintenance starts only when the customer accepts the estimate.

 If the customer does not accept the estimate, the product is returned to the customer.

 Small problems can be repaired directly at the maintenance station. If the maintenance station cannot
solve the problem, the product is sent to the maintenance regional headquarters (if in US or EU) or to
the maintenance main headquarters (otherwise).

 If the maintenance regional headquarters cannot solve the problem, the product is sent to the
maintenance main headquarters.

 Maintenance is suspended if some components are not available.
 Once repaired, the product is returned to the customer.

(c) 2007 Mauro Pezzè & Michal Young Ch 14, slide 5

Multiple choices in the first step
...

... determine the possibilities for
the next step ...

... and so on ...

To a Finite State Model

• The informal specification allows
us to construct an abstract
account of the behaviour of the
system.
• The implemented states will be

much more complex with data
capturing a richer notion of state
(that can influence behaviour).

(c) 2007 Mauro Pezzè & Michal Young Ch 14, slide 6

…to a test suite

TC1 0 2 4 1 0

TC2 0 5 2 4 5 6 0

TC3 0 3 5 9 6 0

TC4 0 3 5 7 5 8 7 8 9 6 0

(c) 2007 Mauro Pezzè & Michal Young Ch 14, slide 7

Meaning: From state 0 to state 2
to state 4 to state 1 to state 0

Is this a thorough test suite?
How can we judge?

“Covering” finite state machines

• State coverage:
• Every state in the model should be visited by at least one test case

• Transition coverage
• Every transition between states should be traversed by at least one test case.
• This is the most commonly used criterion

• A transition can be thought of as a (precondition, postcondition) pair

(c) 2007 Mauro Pezzè & Michal Young Ch 14, slide 8

Path sensitive criteria?

• Basic assumption: States fully summarize history
• No distinction based on how we reached a state; this should be true of well-designed state

machine models

• If the assumption is violated, we may distinguish paths and devise criteria to
cover them
• Single state path coverage:

• traverse each subpath that reaches each state at most once
• Single transition path coverage:

• “” “” each transition at most once
• Boundary interior loop coverage:

• each distinct loop of the state machine must be exercised the minimum, an intermediate, and the
maximum or a large number of times

• Of the path sensitive criteria, only boundary-interior is common

(c) 2007 Mauro Pezzè & Michal Young Ch 14, slide 9

Testing decision structures

Some specifications are structured as
decision tables, decision trees, or flow

charts. We can exercise these as if they
were program source code.

(c) 2007 Mauro Pezzè & Michal Young Ch 14, slide 10

from an informal specification..
Pricing: The pricing function determines the adjusted price of a configuration for a

particular customer.
 The scheduled price of a configuration is the sum of the scheduled price of the model

and the scheduled price of each component in the configuration. The adjusted price is
either the scheduled price, if no discounts are applicable, or the scheduled price less
any applicable discounts.

 There are three price schedules and three corresponding discount schedules,
Business, Educational, and Individual.

 ….
• Educational prices: The adjusted price for a purchase charged to an educational

account in good standing is the scheduled price from the educational price schedule.
No further discounts apply.

…
• Special-price non-discountable offers: Sometimes a complete configuration is offered

at a special, non-discountable price. When a special, non-discountable price is
available for a configuration, the adjusted price is the non-discountable price or the
regular price after any applicable discounts, whichever is less

(c) 2007 Mauro Pezzè & Michal Young Ch 14, slide 11

edu individual
EduAc T T F F F F F F
BusAc - - F F F F F F
CP > CT1 - - F F T T - -
YP > YT1 - - - - - - - -
CP > CT2 - - - - F F T T
YP > YT2 - - - - - - - -
SP < Sc F T F T - - - -
SP < T1 - - - - F T - -
SP < T2 - - - - - - F T
out Edu SP ND SP T1 SP T2 SP
(c) 2007 Mauro Pezzè & Michal Young Ch 14, slide 12

…to a decision table …

…with constraints…

at-most-one (EduAc, BusAc)
at-most-one (YP < YT1, YP > YT2)
YP > YT2 -> YP > YT1
at-most-one (CP < CT1, CP > CT2)
CP > CT2 -> CP > CT1
at-most-one (SP < T1, SP > T2
SP > T2 -> SP > T1

(c) 2007 Mauro Pezzè & Michal Young Ch 14, slide 13

…to test cases

• Basic condition coverage
• a test case specification for each column in the table

• Compound condition adequacy criterion
• a test case specification for each combination of truth values of basic

conditions

• Modified condition/decision adequacy criterion (MC/DC)
• each column in the table represents a test case specification.
• we add columns that differ in one input row and in outcome, then merge

compatible columns

(c) 2007 Mauro Pezzè & Michal Young Ch 14, slide 14

Example MC/DC
C.1 C.1a C.1b C.10

EduAc T F T -
BusAc - - - T
CP > CT1 - - - F
YP > YT1 - - - F
CP > CT2 - - - -
YP > YT2 - - - -
SP > Sc F F T T
SP > T1 - - - -
SP > T2 - - - -
out Edu * * SP

(c) 2007 Mauro Pezzè & Michal Young Ch 14, slide 15

Generate C.1a and C.1b
by flipping one element

of C.1

C.1b can be merged
with an existing column

(C.10) in the spec

Outcome of generated
columns must differ
from source column

Flowgraph based testing

If the specification or model has both
decisions and sequential logic, we can

cover it like program source code.

(c) 2007 Mauro Pezzè & Michal Young Ch 14, slide 16

From an informal spec (1 of 3)

• Process shipping order: The Process shipping order function checks the validity of
orders and prepares the receipt
A valid order contains the following data:
• cost of goods: If the cost of goods is less than the minimum processable order (MinOrder)

then the order is invalid.
• shipping address: The address includes name, address, city, postal code, and country.
• preferred shipping method: If the address is domestic, the shipping method must be either

land freight, expedited land freight, or overnight air; If the address is international, the
shipping method must be either air freight, or expedited air freight.

(c) 2007 Mauro Pezzè & Michal Young Ch 14, slide 17

From an informal spec (2 of 3)

• a shipping cost is computed based on
• address and shipping method.
• type of customer which can be individual, business, educational

• preferred method of payment. Individual customers can use only
credit cards, business and educational customers can choose
between credit card and invoice
• card information: if the method of payment is credit card, fields credit

card number, name on card, expiration date, and billing address, if
different than shipping address, must be provided. If credit card
information is not valid the user can either provide new data or abort
the order

(c) 2007 Mauro Pezzè & Michal Young Ch 14, slide 18

From an informal spec (3 of 3)

• The outputs of Process shipping order are
• validity: Validity is a boolean output which indicates whether the order can be

processed.
• total charge: The total charge is the sum of the value of goods and the computed

shipping costs (only if validity = true).
• payment status: if all data are processed correctly and the credit card information

is valid or the payment is invoice, payment status is set to valid, the order is
entered and a receipt is prepared; otherwise validity = false.

(c) 2007 Mauro Pezzè & Michal Young Ch 14, slide 19

To a Flowgraph

• Here conditions often refer to
parameters of the function.
• Transitions can be determined

by conditions on data.
• States don’t necessarily fully

summarize history as they do in
FSM models.

(c) 2007 Mauro Pezzè & Michal Young Ch 14, slide 20

...from the flow graph to test cases

(c) 2007 Mauro Pezzè & Michal Young Ch 14, slide 21

Case
Too

Small
Ship

Where
Ship

Method
Cust
Type

Pay
Method

Same
Address CC valid

TC-1 No Int Air Bus CC No Yes
TC-2 No Dom Land - - - -
TC-3 Yes - - - - - -
TC-4 No Dom Air - - - -
TC-5 No Int Land - - - -
TC-6 No - - Edu Inv - -
TC-7 No - - - CC Yes -
TC-8 No - - - CC - No (abort)

TC-9 No - - - CC -
No (no
abort)

Branch testing: cover all branches

Grammar-based testing

Complex input is (or can) often be
described by a context-free grammar

(c) 2007 Mauro Pezzè & Michal Young Ch 14, slide 22

Grammars in specifications

• Grammars are good at:
• Representing inputs of varying and unbounded size
• With recursive structure
• And boundary conditions

• Examples:
• Complex textual inputs
• Trees (search trees, parse trees, ...)

• Note XML and HTMl are trees in textual form
• Program structures

• Which are also tree structures in textual format!

(c) 2007 Mauro Pezzè & Michal Young Ch 14, slide 23

Grammar-based testing

• Test cases are strings generated from the grammar
• Coverage criteria:
• Production coverage: each production must be used to generate at least one

(section of) test case
• Boundary condition: annotate each recursive production with minimum and

maximum number of application, then generate:
• Minimum
• Minimum + 1
• Maximum - 1
• Maximum

(c) 2007 Mauro Pezzè & Michal Young Ch 14, slide 24

From an informal specification (1 of 3)...

• The Check-configuration function checks the validity of a computer
configuration.
• The parameters of check-configuration are:
• Model
• Set of components

(c) 2007 Mauro Pezzè & Michal Young Ch 14, slide 25

From an informal specification (2 of 3)...

• Model: A model identifies a specific product and determines a set of
constraints on available components. Models are characterized by
logical slots for components, which may or may not be implemented
by physical slots on a bus. Slots may be required or optional.
Required slots must be assigned with a suitable component to obtain
a legal configuration, while optional slots may be left empty or filled
depending on the customers' needs
• Example: The required ``slots'' of the Chipmunk C20 laptop computer include

a screen, a processor, a hard disk, memory, and an operating system. (Of
these, only the hard disk and memory are implemented using actual
hardware slots on a bus.) The optional slots include external storage devices
such as a CD/DVD writer.

(c) 2007 Mauro Pezzè & Michal Young Ch 14, slide 26

From an informal specification (3 of 3)...

• Set of Components: A set of [slot,component] pairs, which must
correspond to the required and optional slots associated with the model. A
component is a choice that can be varied within a model, and which is not
designed to be replaced by the end user. Available components and a
default for each slot is determined by the model. The special value empty
is allowed (and may be the default selection) for optional slots. In addition
to being compatible or incompatible with a particular model and slot,
individual components may be compatible or incompatible with each
other.
• Example: The default configuration of the Chipmunk C20 includes 20 gigabytes of

hard disk; 30 and 40 gigabyte disks are also available. (Since the hard disk is a
required slot, empty is not an allowed choice.) The default operating system is
RodentOS 3.2, personal edition, but RodentOS 3.2 mobile server edition may also be
selected. The mobile server edition requires at least 30 gigabytes of hard disk.

(c) 2007 Mauro Pezzè & Michal Young Ch 14, slide 27

…to a grammar
<Model> ::= <modelNumber> <compSequence>

<optCompSequence>
<compSequence> ::= <Component> <compSequence> | empty
<optCompSequence> ::= <OptionalComponent> <optCompSequence> |

empty
<Component> ::= <ComponentType> <ComponentValue>
<OptionalComponent> ::= <ComponentType>
<modelNumber> ::= string
<ComponentType> ::= string
<ComponentValue> ::= string

(c) 2007 Mauro Pezzè & Michal Young Ch 14, slide 28

…to a grammar with limits
Model <Model> ::= <modelNumber> <compSequence>

<optCompSequence>
compSeq1 [0, 16] <compSequence> ::= <Component> <compSequence>
compSeq2 <compSequence> ::= empty
optCompSeq1 [0,
16]

<optCompSequence> ::= <OptionalComponent>
<optCompSequence>

optCompSeq2 <optCompSequence> ::= empty
Comp <Component> ::= <ComponentType> <ComponentValue>
OptComp <OptionalComponent> ::= <ComponentType>
modNum <modelNumber> ::= string
CompTyp <ComponentType> ::= string
CompVal <ComponentValue> ::= string

(c) 2007 Mauro Pezzè & Michal Young Ch 14, slide 29

…to test cases

• “Mod000”
• Covers Model, compSeq1[0], compSeq2, optCompSeq1[0], optCompSeq2, modNum

• “Mod000 (Comp000, Val000) (OptComp000)”
• Covers Model, compSeq1[1], compSeq2, optCompSeq2[0], optCompSeq2, Comp, OptComp, modNum,

CompTyp, CompVal

• Etc…
• Comments:

• By first applying productions with nonterminals on the right side, we obtain few, large test cases
• By first applying productions with terminals on the right side, we obtain many, small test cases

(c) 2007 Mauro Pezzè & Michal Young Ch 14, slide 30

Grammar vs. Combinatorial Testing

• Combinatorial specification-based testing is good for “mostly
indepedendent” parameters
• We can incorporate a few constraints, but complex constraints are hard to

represent and use
• We must often “factor and flatten”

• E.g., separate “set of slots” into characteristics “number of slots” and predicates about
what is in the slots (all together)

• Grammar describes sequences and nested structure naturally
• But some relations among different parts may be difficult to describe and

exercise systematically, e.g., compatibility of components with slots

(c) 2007 Mauro Pezzè & Michal Young Ch 14, slide 31

Summary: The big picture

• Models are useful abstractions
• In specification and design, they help us think and communicate about

complex artifacts by emphasizing key features and suppressing details
• Models convey structure and help us focus on one thing at a time

• We can use them in systematic testing
• If a model divides behavior into classes, we probably want to exercise each of

those classes!
• Common model-based testing techniques are based on state machines,

decision structures, and grammars
• but we can apply the same approach to other models

(c) 2007 Mauro Pezzè & Michal Young Ch 14, slide 32

