
A Framework for Testing and Analysis

Adapted by Stuart Anderson from (c) 2007 Mauro Pezzè &
Michal Young

Ch 2, slide 1

Learning objectives for this slideset

• Be confident to identify dimensions and tradeoff between test and
analysis activities

• Be confident to distinguish validation from verification activities

• Have the capability to identify common limitations and potentials of
test and analysis methods

Adapted by Stuart Anderson from (c) 2007 Mauro Pezzè &
Michal Young

Ch 2, slide 2

Verification and validation

• Validation:
does the software system meets the user's real needs?

are we building the right software?

[This is connecting the technical system to the stakeholders worlds]

• Verification:
does the software system meets the requirements specifications?

 are we building the software right?

[This is about connecting the technical system to a more or less formal
statements of requirement]

Adapted by Stuart Anderson from (c) 2007 Mauro Pezzè &
Michal Young

Ch 2, slide 3

Validation and Verification

Adapted by Stuart Anderson from (c) 2007 Mauro Pezzè &
Michal Young

Ch 2, slide 4

Actual
Requirements

SW
Specs

System

Validation Verification
Includes usability
testing, user feedback

Includes testing,
inspections, static
analysis

Verification or validation depends on the
specification
• Unverifiable (but validatable) spec: ...

if a user presses a request button at
floor i, an available elevator must
arrive at floor i soon...

• Verifiable spec: ... if a user presses a
request button at floor i, an available
elevator must arrive at floor i within
30 seconds...

• Are there problems with this
approach? How might you re-frame
the original requirement?

Adapted by Stuart Anderson from (c) 2007 Mauro Pezzè &
Michal Young

Ch 2, slide 5

1 2 3 4 5 6 7 8

Validation and Verification Activities

Adapted by Stuart Anderson from (c) 2007 Mauro Pezzè &
Michal Young

Ch 2, slide 6

validation

verification

This is based on the
“classical” V-model of
development and
illustrates the roles of
validation and verification
in that model. There are
other possibilities, but this
illustrates many of them.

You can’t always get what you want

Correctness properties are undecidable
the halting problem can be embedded in almost every

property of interest

Adapted by Stuart Anderson from (c) 2007 Mauro Pezzè &
Michal Young

Ch 2, slide 7

Decision

Procedure

Property

Program

Pass/Fail

ever

You can get what you want sometimes

Restricting the form of properties and programs can
allow you to find a decision procedure BUT in

general you can’t so in some domains there are
such restrictions that allow this kind of setup.

Adapted by Stuart Anderson from (c) 2007 Mauro Pezzè &
Michal Young

Ch 2, slide 8

Decision

Procedure

Property

Program

Pass/Fail

Getting what you need ...

• optimistic inaccuracy: we may accept
some programs that do not possess
the property (i.e., it may not detect all
violations).
• testing

• pessimistic inaccuracy: it is not
guaranteed to accept a program even
if the program does possess the
property being analyzed
• automated program analysis techniques

• simplified properties: reduce the
degree of freedom for simplifying the
property to check

Adapted by Stuart Anderson from (c) 2007 Mauro Pezzè &
Michal Young

Ch 2, slide 9

Simplifying the situation

Original Situation

• Unrestricted use of language
features that can result in
unbounded looping of the code.

• In general it is quite possible to
produce incomprehensible code
by using the features of any
modern programming language
in an indisciplined manner.

Simplified Situation

• Impose restrictions: e.g. SPARK
Ada: Handling of exceptions is not
permitted. Exception handling gives raise to
numerous interprocedural control-flow
paths. Formal verification of programs with
exception handlers requires tracking
properties along all those paths, which is not
doable precisely without a lot of manual
work. But raising exceptions is allowed
(see Raising Exceptions and Other Error
Signaling Mechanisms).

• See: https://docs.adacore.com/spark2014-
docs/html/ug/en/source/language_restriction
s.html

Adapted by Stuart Anderson from (c) 2007 Mauro Pezzè &
Michal Young

Ch 2, slide 10

Some Terminology

• Safe: A safe analysis has no optimistic inaccuracy, i.e., it accepts only
correct programs.

• Sound: An analysis of a program P with respect to a formula F is
sound if the analysis returns true only when the program does satisfy
the formula.

• Complete: An analysis of a program P with respect to a formula F is
complete if the analysis always returns true when the program
actually does satisfy the formula.

Adapted by Stuart Anderson from (c) 2007 Mauro Pezzè &
Michal Young

Ch 2, slide 11

Summary

• Many interesting properties are undecidable, thus in general
we cannot count on tools that work without human
intervention (but we often accept “approximately” correct
programs)

• Assessing program qualities comprises two complementary
sets of activities: validation (does the software do what it is
supposed to do?) and verification (does the system behave
as specified?)

• There is no single technique for all purposes: test designers
need to select a suitable combination of techniques

Adapted by Stuart Anderson from (c) 2007 Mauro Pezzè &
Michal Young

Ch 2, slide 12

