
Adapted Stuart Anderson from (c) 2007 Mauro Pezzè & Michal Young Ch 21, slide 1

Integration and Component-based Software
Testing

Learning objectives

• Be able to identify integration testing issues

– Distinguish integration faults from faults that should be eliminated in

unit testing

– Be able to prevent and detect integration faults

• Be able to apply strategies for ordering construction and testing

– E.g. incremental assembly and testing to reduce effort and control risk

– Continuous Integration to reduce effort and control risk

• Be able to identify challenges and utilize approaches to testing

component-based systems

Adapted Stuart Anderson from (c) 2007 Mauro Pezzè & Michal Young Ch 21, slide 2

What is integration testing?

Module test Integration test System test

Specification: Module

interface

Interface specs,

module breakdown

Requirements

specification

Visible structure: Coding details Modular structure

(software architecture)

— none —

Scaffolding

required:

Some Often extensive Some

Looking for faults

in:

Modules Interactions,

compatibility

System

functionality

Adapted Stuart Anderson from (c) 2007 Mauro Pezzè & Michal Young Ch 21, slide 3

Continuous Integration

• In a more agile development setting

• Architecture may emerge slowly and evolve

• Complexity of interfaces and interaction will grow as systems

develop

• Continuous integration may reduce the need for scaffolding code

– Because the context for a module is being developed at the same time,

perhaps by a different team.

– Scaffolding is replaced by the real code for the context.

– This may still add issues around observing the interaction of modules

• However, refactoring may result in the need for scaffolding

Adapted Stuart Anderson from (c) 2007 Mauro Pezzè & Michal Young Ch 21, slide 4

Integration versus Unit Testing

• Unit (module) testing is a necessary foundation

– Unit level has maximum controllability and visibility

– Integration testing can never compensate for inadequate unit testing

• Integration testing may serve as a process check

– If module faults are revealed in integration testing, they signal

inadequate unit testing

– If integration faults occur in interfaces between correctly implemented

modules, the errors can be traced to module breakdown and interface

specifications

Adapted Stuart Anderson from (c) 2007 Mauro Pezzè & Michal Young Ch 21, slide 5

Integration Faults

• Inconsistent interpretation of parameters or values

– Example: Mixed units (meters/yards) in Martian Lander

• Violations of value domains, capacity, or size limits

– Example: Buffer overflow

• Side effects on parameters or resources

– Example: Conflict on (unspecified) temporary file

• Omitted or misunderstood functionality

– Example: Inconsistent interpretation of web hits

• Nonfunctional properties

– Example: Unanticipated performance issues

• Dynamic mismatches

– Example: Incompatible polymorphic method calls

Adapted Stuart Anderson from (c) 2007 Mauro Pezzè & Michal Young Ch 21, slide 6

Adapted Stuart Anderson from (c) 2007 Mauro Pezzè & Michal Young Ch 21, slide 7

Example: A Memory Leak

Apache web server, version 2.0.48

Response to normal page request on secure (https) port

static void ssl io filter disable(ap filter t *f)

{ bio filter in ctx t *inctx = f->ctx;

inctx->ssl = NULL;

inctx->filter ctx->pssl = NULL;

}

No obvious error, but
Apache leaked memory
slowly (in normal use) or
quickly (if exploited for a
DOS attack)

Adapted Stuart Anderson from (c) 2007 Mauro Pezzè & Michal Young Ch 21, slide 8

Example: A Memory Leak

Apache web server, version 2.0.48

Response to normal page request on secure (https) port

static void ssl io filter disable(ap filter t *f)

{ bio filter in ctx t *inctx = f->ctx;

SSL_free(inctx -> ssl);

inctx->ssl = NULL;

inctx->filter ctx->pssl = NULL;

}

The missing code is for a
structure defined and
created elsewhere,
accessed through an
opaque pointer.

Adapted Stuart Anderson from (c) 2007 Mauro Pezzè & Michal Young Ch 21, slide 9

Example: A Memory Leak

Apache web server, version 2.0.48

Response to normal page request on secure (https) port

static void ssl io filter disable(ap filter t *f)

{ bio filter in ctx t *inctx = f->ctx;

SSL_free(inctx -> ssl);

inctx->ssl = NULL;

inctx->filter ctx->pssl = NULL;

}

Almost impossible to find
with unit testing.
(Inspection and some
dynamic techniques could
have found it.)

Maybe you’ve heard ...

• Yes, I implemented ⟨module

A⟩, but I didn’t test it

thoroughly yet. It will be

tested along with ⟨module B⟩
when that’s ready.

Adapted Stuart Anderson from (c) 2007 Mauro Pezzè & Michal Young Ch 21, slide 11

Translation...

• Yes, I implemented ⟨module

A⟩, but I didn’t test it

thoroughly yet. It will be

tested along with ⟨module B⟩
when that’s ready.

• I didn’t think at all about the

strategy for testing. I didn’t

design ⟨module A⟩ for

testability and I didn’t think

about the best order to build

and test modules ⟨A⟩ and ⟨B⟩.

Adapted Stuart Anderson from (c) 2007 Mauro Pezzè & Michal Young Ch 21, slide 12

Integration Plan + Test Plan

Adapted Stuart Anderson from (c) 2007 Mauro Pezzè & Michal Young

• Integration test plan drives

and is driven by the project

“build plan”

– A key feature of the system

architecture and project plan

System Architecture

Build Plan

...

...

Test Plan

...

Big Bang Integration Test

An extreme and desperate approach:

Test only after integrating all modules

+Does not require scaffolding
• The only excuse, and a bad one

- Minimum observability, diagnosability, efficacy, feedback

- High cost of repair

• Recall: Cost of repairing a fault rises as a function of time between

error and repair

Adapted Stuart Anderson from (c) 2007 Mauro Pezzè & Michal Young Ch 21, slide 14

Structural and Functional Strategies

• Structural orientation:

Modules constructed, integrated and tested based on a

hierarchical project structure

– Top-down, Bottom-up, Sandwich, Backbone

• Functional orientation:

Modules integrated according to application characteristics or

features

– Threads, Critical module

Adapted Stuart Anderson from (c) 2007 Mauro Pezzè & Michal Young Ch 21, slide 15

Drivers and Stubs

Module
Under
Test

Driver

Stub 2Stub 1

• In systems a module will be asked

to do things and will ask other

modules to do things for it.

• We might not have those when we

are testing the modules so we

need:

– Drivers that make some of the

demands that will be made on the

module.

– Stubs that behave somewhat like the

modules the module under test will

use.

Adapted Stuart Anderson from (c) 2007 Mauro Pezzè & Michal Young Ch 21, slide 16

Top down

• Working from the top level (in

terms of “use” or “include”

relation) toward the bottom.

• No drivers required if program

tested from top-level interface

(e.g. GUI, CLI, web app, etc.)

• But we will need stubs for sub

modules 11, 12, 2 and 3

• As we substitute modules for stubs

the tests can be more thorough.

• Eventually we don’t need stubs

and the system is complete

Adapted Stuart Anderson from (c) 2007 Mauro Pezzè & Michal Young Ch 21, slide 17

Bottom Up

• Starting at the leaves of the “uses”

hierarchy, we never need stubs

• But we do need drivers that behave

like the non-leaf modules to drive

things below them.

• As we develop modules, the module

replaces a driver and the tests get

more thorough.

• If we look at the red lines – we might

have 3 subsystems we are working

with.

• Eventually all the drivers get replaced

and we have a working system.

Adapted Stuart Anderson from (c) 2007 Mauro Pezzè & Michal Young Ch 21, slide 18

Sandwich, etc

• Working from the extremes (top

and bottom) toward center, we

may use fewer drivers and stubs,

OR

• A “thread” is a portion of several

modules that together provide a

user-visible program feature.

• Integrating one thread, then

another, etc., we maximize

visibility for the user

• This can reduce the number of

stubs and drivers

Adapted Stuart Anderson from (c) 2007 Mauro Pezzè & Michal Young Ch 21, slide 19

Critical Modules

• Strategy: Start with riskiest modules

– Risk assessment is necessary first step

– May include technical risks (is X feasible?), process risks (is schedule for

X realistic?), other risks

• May resemble thread or sandwich process in tactics for flexible

build order

– E.g., constructing parts of one module to test functionality in another

• Key point is risk-oriented process

– Integration testing as a risk-reduction activity, designed to deliver any

bad news as early as possible

Adapted Stuart Anderson from (c) 2007 Mauro Pezzè & Michal Young Ch 21, slide 20

Adapted Stuart Anderson from (c) 2007 Mauro Pezzè & Michal Young Ch 21, slide 21

Choosing a Strategy

• Functional strategies require more planning
– Structural strategies (bottom up, top down, sandwich) are simpler

– But thread and critical modules testing provide better process visibility,
especially in complex systems

• Possible to combine
– Top-down, bottom-up, or sandwich are reasonable for relatively small

components and subsystems

– Combinations of thread and critical modules integration testing are
often preferred for larger subsystems

Working Definition of Component

• Reusable unit of deployment and composition

– Deployed and integrated multiple times

– Integrated by different teams (usually)

• Component producer is distinct from component user

• Characterized by an interface or contract
• Describes access points, parameters, and all functional and non-functional behavior

and conditions for using the component

• No other access (e.g., source code) is usually available

• Often larger grain than objects or packages

– Example: A complete database system may be a component

Adapted Stuart Anderson from (c) 2007 Mauro Pezzè & Michal Young Ch 21, slide 22

Components — Related Concepts

• Framework
• Skeleton or micro-architecture of an application

• May be packaged and reused as a component, with “hooks” or “slots” in the

interface contract

• Design patterns
• Logical design fragments

• Frameworks often implement patterns, but patterns are not frameworks.

Frameworks are concrete, patterns are abstract

• Component-based system
• A system composed primarily by assembling components, often “Commercial off-

the-shelf” (COTS) components

• Usually includes application-specific “glue code”

Adapted Stuart Anderson from (c) 2007 Mauro Pezzè & Michal Young Ch 21, slide 23

Component Interface Contracts

• Application programming interface (API) is distinct from

implementation

– Example: DOM interface for XML is distinct from many possible

implementations, from different sources

• Interface includes everything that must be known to use the

component

– More than just method signatures, exceptions, etc

– May include non-functional characteristics like performance, capacity,

security

– May include dependence on other components

Adapted Stuart Anderson from (c) 2007 Mauro Pezzè & Michal Young Ch 21, slide 24

Challenges in Testing Components

• The component builder’s challenge:

– Impossible to know all the ways a component may be used

– Difficult to recognize and specify all potentially important properties

and dependencies

• The component user’s challenge:

– No visibility “inside” the component

– Often difficult to judge suitability for a particular use and context

Adapted Stuart Anderson from (c) 2007 Mauro Pezzè & Michal Young Ch 21, slide 25

Testing a Component: Producer View

• First: Thorough unit and subsystem testing

– Includes thorough functional testing based on application program

interface (API)

– Rule of thumb: Reusable component requires at least twice the effort in

design, implementation, and testing as a subsystem constructed for a

single use (often more)

• Second: Thorough acceptance testing

– Based on scenarios of expected use

– Includes stress and capacity testing

• Find and document the limits of applicability

Adapted Stuart Anderson from (c) 2007 Mauro Pezzè & Michal Young Ch 21, slide 26

Testing a Component: User View

• Not primarily to find faults in the component

• Major question: Is the component suitable for this application?

– Primary risk is not fitting the application context:

• Unanticipated dependence or interactions with environment

• Performance or capacity limits

• Missing functionality, misunderstood API

– Risk high when using component for first time

• Reducing risk: Trial integration early

– Often worthwhile to build driver to test model scenarios, long before

actual integration

Adapted Stuart Anderson from (c) 2007 Mauro Pezzè & Michal Young Ch 21, slide 27

Adapting and Testing a Component

• Applications often access components through an adaptor, which can also be

used by a test driver (or at least a standard way to access a stub).

Adapted Stuart Anderson from (c) 2007 Mauro Pezzè & Michal Young Ch 21, slide 28

By Vanderjoe - Own work, CC BY-SA 4.0, https://commons.wikimedia.org/w/index.php?curid=61992934

Adapted Stuart Anderson from (c) 2007 Mauro Pezzè & Michal Young Ch 21, slide 29

Summary

• Integration testing focuses on interactions

– Must be built on foundation of thorough unit testing

– Integration faults often traceable to incomplete or misunderstood

interface specifications

• Prefer prevention to detection, and make detection easier by imposing design

constraints

• Strategies tied to project build order

– Order construction, integration, and testing to reduce cost or risk

• Reusable components require special care

– For component builder, and for component user

