
Basic Principles

Adapted by Stuart Anderson from (c) 2007 Mauro Pezzè &
Michal Young

Ch 3, slide 1

Learning objectives for this slideset

• Be able to explain why the basic principles underlying Analysis &
Testing (A&T) techniques are useful and important

• Provide examples of the application of the principles.

Adapted by Stuart Anderson from (c) 2007 Mauro Pezzè &
Michal Young

Ch 3, slide 2

A&T Principles (General Engineering)

• Partition: divide and conquer [and ensure the interaction of
components is simple]

• Visibility: making information accessible [at least to the
tester/developer]

• Feedback: tuning the development process [in test-driven
development, test drives the development]

Adapted by Stuart Anderson from (c) 2007 Mauro Pezzè &
Michal Young

Ch 3, slide 3

Specific A&T Principles

• Sensitivity: a good test selection criterion should be “sensitive” in the
sense that whatever particular tests are chosen to verify a
requirement they should give you the same result.

• Redundancy/Diversity: can we get “independent” reassurance that a
system satisfies a requirement by using redundant/diverse methods

• Restriction/Simplification: making the problem easier by coding in a
restricted way OR changing the requirement OR both

Adapted by Stuart Anderson from (c) 2007 Mauro Pezzè &
Michal Young

Ch 3, slide 7

Sensitivity

• A test selection criterion is a process by which we select or construct
a tests for a given purpose.

• a test selection criterion works better if every selected test provides
the same result, i.e., if the program fails with one of the selected
tests, it fails with all of them (reliable criteria)

• For example, suppose a system fails because some fixed area of
storage is too small:
• A selection criterion might choose a range of different tests data some of

which overflows the storage.
• The requirement might say that the system works for all test data.
• How does this violate sensitivity? How do we fix it?

Adapted by Stuart Anderson from (c) 2007 Mauro Pezzè &
Michal Young

Ch 3, slide 8

Redundancy: making intentions explicit

• Redundant checks can increase the capabilities of catching specific
faults early or more efficiently.
• Static type checking is redundant with respect to dynamic type checking, but

it can reveal many type mismatches earlier and more efficiently.

• Validation of requirement specifications is redundant with respect to
validation of the final software but can reveal errors earlier and more
efficiently.

• Testing and assertions of properties in the code are redundant, but are often
used together to increase confidence

Adapted by Stuart Anderson from (c) 2007 Mauro Pezzè &
Michal Young

Ch 3, slide 9

Restriction: making the problem easier

• Suitable restrictions can reduce hard (unsolvable) problems to
simpler (solvable) problems
• A weaker spec may be easier to check: it is impossible (in general) to show

that pointers are used correctly, but the simple Java requirement that
pointers are initialized before use is simple to enforce.

• A stronger spec may be easier to check: it is impossible (in general) to show
that type errors do not occur at run-time in a dynamically typed language,
but statically typed languages impose stronger restrictions that are easily
checkable.

Adapted by Stuart Anderson from (c) 2007 Mauro Pezzè &
Michal Young

Ch 3, slide 10

Partition: divide and conquer

• Hard testing and verification problems can be handled by suitably
partitioning the input space:
• both structural and functional test selection criteria identify suitable

partitions of code or specifications (partitions drive the sampling of the input
space)

• verification techniques fold the input space according to specific
characteristics, grouping homogeneous data together and determining
partitions

Adapted by Stuart Anderson from (c) 2007 Mauro Pezzè &
Michal Young

Ch 3, slide 11

Visibility: Judging status

• The ability to measure progress or status against goals
• X visibility = ability to judge how we are doing on X, e.g., schedule visibility = “Are we

ahead or behind schedule,” quality visibility = “Does quality meet our objectives?”

• Involves setting goals that can be assessed at each stage of
development

• The biggest challenge is early assessment, e.g., assessing specifications and design with
respect to product quality

• Related to observability
• Example: Choosing a simple or standard internal data format to facilitate unit

testing (e.g. using a good JSON editor)

Adapted by Stuart Anderson from (c) 2007 Mauro Pezzè &
Michal Young

Ch 3, slide 12

Feedback: tuning the development process

• Learning from experience: Each project provides information to
improve the next.

• This works best if you are developing similar products

• Past experience can hamper solving new problems (because we
focus excessively on the previous bad experience)

• Examples
• Checklists are built on the basis of errors revealed in the past

• Error taxonomies can help in building better test selection criteria

• Design guidelines can avoid common pitfalls

Adapted by Stuart Anderson from (c) 2007 Mauro Pezzè &
Michal Young

Ch 3, slide 13

Summary

• The discipline of test and analysis is characterized by 6 main
principles:
• Sensitivity: better to fail every time than sometimes

• Redundancy: making intentions explicit

• Restriction: making the problem easier

• Partition: divide and conquer

• Visibility: making information accessible

• Feedback: tuning the development process

• They can be used to understand advantages and limits of different
approaches and compare different techniques

Adapted by Stuart Anderson from (c) 2007 Mauro Pezzè &
Michal Young

Ch 3, slide 14

