
Software Testing 2023-4 Grading Scheme 
In this grading scheme you will provide your auditor with the information they need to 
determine a mark for your coursework. There are opportunities for you to emphasize the 
areas you believe are excellent and de-emphasize those you believe are less well developed. 
The aim of this grading scheme is to provide you with a structure to demonstrate that you 
have achieved the learning outcomes for the course. The awarded grade will vary depending 
on the quality of the evidence you present but, provided you demonstrate you have met the 
learning outcomes you will pass the course.  This grading scheme is available as a Microsoft 
form and this is how you will submit you grading. 
   
This is the grading scheme for the portfolio you develop. You will use it to evaluate your 
work and your auditor will use it to arrive at a grade for your work. You should use this 
grading scheme to provide a self- evaluation of your portfolio. The portfolio is a short 
document that presents evidence that you have achieved each of the learning outcomes of 
the Software Testing course. The portfolio should be a maximum of 3 pages long of at least 
11-point text and normal margins. You are provided with a Word and Latex template for 
the portfolio. The portfolio will refer to work you have done throughout the course to 
provide evidence that your evaluation of your work is sound. This will be checked by the 
auditor and your self-evaluation grades may be modified to reflect the expert opinion of 
your auditor. 
 
Before grading you should consider the University-wide common marking scheme. This is 
constructed to permit sufficient range to allow recognition of variation in ability, particularly 
the recognition of unusually high ability.  
 

Honours 
Class 

Mark 
(%) 

Grade Non-Honours Description 

1st 90-100 A1 Excellent 

1st 80-89 A2 Excellent 

1st 70-79 A3 Excellent 

2.1 60-69 B Very Good 

2.2 50-59 C Performance at a level showing the potential to achieve 
at least a lower second-class honours degree 

3rd 40-49 D Pass, may not be sufficient for progression to an honours 
programme 

Fail 30-39 E Marginal Fail 

https://forms.office.com/e/LqUpbx3xeA
https://forms.office.com/e/LqUpbx3xeA


Fail 20-29 F Clear Fail 

Fail 10-19 G Bad Fail 

Fail 0-9 H Bad Fail 

 
At honours level the University recognizes excellence by awarding a first-class honours 
degree for a performance that achieves a mark of 70 or more. For the Software Testing 
course, a mark of 70-79 is awarded for a performance that demonstrates excellence within 
the confines of the course (I.e. a performance that mostly draws on the material of the 
course). Marks in the range 80-89 will be awarded for a performance that demonstrates 
meaningful synergy with material beyond the material of the course. Here “meaningful 
synergy” means producing work that is markedly better than could be achieved by only 
drawing on the course material and that improvement is based directly on knowledge and 
skills derived from outside the course material (e.g. from other courses, reading or other 
experience). Marks in the range 90-100 will be awarded for a performance that arrives at a 
result that is better than could be achieved by only drawing on the course material and 
makes use of novel techniques that are not easily accessible in the literature (such marks 
are rarely awarded and recognize significant novelty – the 90-100 range is intended to 
recognize exceptional creativity, it would be unusual to see marks in this range). 

System under test 
In the Software Testing coursework, you are aiming to use the testing of software you are 
already developing or are familiar with as the vehicle to demonstrate you have achieved the 
learning outcomes of the course. You have a free choice in this but if you do not have a 
suitable candidate we have supplied a simple JavaScript project that you can work on. Your 
portfolio should begin with a one paragraph outline of the software. The software itself 
should be sufficiently documented that a range of requirements are included with the 
documentation. 

Weighting 
There are 5 learning outcomes for the course, and these are listed below.  You must 
demonstrate you have achieved these outcomes, but you can choose to vary the weighting 
for each outcome within limits.  The weighting for each outcome can vary between 15% and 
25%.  The total of the weights must be 100%.  To simplify matters, weights must also be a 
multiple of 5.  So, for example, if you think you have done a good job of analyzing 
requirements and poorer job of evaluating the limitations of your testing processes you 
might want to weight learning outcome 1 as 25% and learning outcome 4 as 15%. 

Portfolio Structure and Grading 
Your portfolio should be structured into sections, one for each of the learning outcomes.  
Each section will be quite brief and will point to supporting evidence that you have gathered 
and stored in your coursework repository. Recall the max length is 3 pages.  
 
The grading scheme for the portfolio is provided below and you should submit your self-
evaluation of your work along with the portfolio. 

https://git.ecdf.ed.ac.uk/s2119967/stsample-2022-2023/


 
Each of the Learning outcomes is broken down into four grading elements and each of 
these can be graded according to six different grades depending on the assessment of the 
element.  These grades are: 

• 0: The element is missing. 

• 1: The element is poor.  This means that there is some attempt to cover the element, 
but the portfolio does not provide sufficient evidence that there is a good 
understanding of the activities covered by the element. 

• 2: The element is fair: there is an indication that there is some understanding of the 
element and there is some evidence that the associated activities have been carried 
out but there is insufficient evidence to support a clear grasp of the activity.  A grade 
2 across the board results in a mark of 40. 

• 3: The element is sound: there is an indication that there is good understanding of 
the element and the activities associated with the element are evidenced in the 
portfolio.  A grade 3 across the board results in a mark of 60. 

• 4: The element is excellent: there is indication of a very strong grasp of the element 
and the activities have been carried out thoroughly and this is evidenced in the 
portfolio.  A grade 4 across the board results in a mark of 80. 

• 5: The element is exceptional:  The portfolio provides evidence for the award of a 
grade 4 and provides evidence that approaches that go beyond those taught in the 
course have been used and provide significant improvement over what could have 
been achieved using techniques covered in the course.   

1. Analyze requirements to determine appropriate testing strategies [Default Weight: 20%] 
In this section you are evaluating the statement of the requirements on the software 
you have chosen.  These should afford a range of different types of requirement that 
allow the portfolio to display the techniques covered in the course (1.1).  The 
requirements should be demonstrably applicable at different levels so some should be 
particular to individual components and on the range up to system level attributes (1.2).  

The portfolio should identify testing approaches for the requirements identified, this 
should cover a range of different approaches (1.3).  The final component should assess 
how well the portfolio justifies the choice of testing approach (1.4). 

1.1. Range of requirements, functional requirements, measurable quality attributes, 
qualitative requirements, … 

1.2. Level of requirements, system, integration, unit. 
1.3. Identifying test approach for chosen attributes. 
1.4. Assess the appropriateness of your chosen testing approach. 

2. Design and implement comprehensive test plans with instrumented code [Default 

Weight: 20%] The course advocates the use of Test-Driven development the assessment 
should take account of this because the plan is likely to evolve during the development.  
The portfolio should outline a plan for testing that is consistent with the requirements 
and test approaches identified in section 1 and ensures adequate testing (2.1).  The 
evaluation of the plan should identify any potential omissions or vulnerabilities of the 

plan and assess how well it will ensure adequate testing (2.2).  In order to test the code 
adequately there will need to be additional instrumentation.  Here you should assess 
how well the portfolio presents the instrumentation.  Is it clear what has been done 



(2.3)?  How good is the instrumentation?  Could it be improved to test the requirements 
more adequately? (2.4) 
2.1. Construction of the test plan.  

2.2. Evaluation of the quality of the test plan.  
2.3. Instrumentation of the code.  
2.4. Evaluation of the instrumentation.  

3. Apply a wide variety of testing techniques and compute test coverage and yield 
according to a variety of criteria [Default Weight: 20%]. This section assesses how well 
the planned testing has gone in practice.  Were all the planned techniques used and how 
well they were implemented  The portfolio should outline how well the implemented 
tests compare with the planned testing (3.1).  The portfolio should contain a brief 
discussion motivating the choice of evaluation criteria used for each testing method 
(3.2).  The portfolio should also present a brief overview of the results of testing that 
points to more detailed work this should communicate the results effectively (3.3).  The 
final element in the portfolio should cover the application of the chosen evaluation 

techniques and this section of the portfolio should effectively communicate the results 
of the evaluation (3.4). 

3.1. Range of techniques. 
3.2. Evaluation criteria for the adequacy of the testing. 
3.3. Results of testing. 
3.4. Evaluation of the results. 

4. Evaluate the limitations of a given testing process, using statistical methods where 
appropriate, and summarise outcomes. [Default Weight 20%This section of the portfolio 
should provide an overall evaluation of the testing process.  The first part covers any 
omissions or deficiencies in the testing carried out and how it could be improved (4.1).  
The next section should identify and discuss the setting of target levels for the tests 

motivating these adequately (4.2).  There should be discussion and explanation of how 
well testing targets have been met by the testing motivating variations from target (4.3).  
Finally, the last section should discuss what could be done to achieve or exceed the 

target levels (4.4). 
4.1. Identifying gaps and omission in the testing process. 
4.2. Identifying target coverage/performance levels for the different testing procedures. 
4.3. Discussing how the testing carried out compares with the target levels. 
4.4. Discussion of what would be necessary to achieve the target levels. 

5. Conduct reviews and inspections and design and implement automated testing 
processes. [Default Weight: 20%] This section covers review processes and the place of 
testing in modern software development in a DevOps environment using CI/CD.  
Software quality depends on may different elements and review is important.  The 
portfolio should identify appropriate review techniques and point to the results (5.1). 
The remaining three sections relate to the section of the portfolio that describes the CI 
pipeline constructed (5.2), the embedding of testing in the pipeline (5.3) and evidence 
that the pipeline behaves as expected (5.4).  You should evaluate the quality of the work 
done in devising, building and operating the pipeline. 

5.1. Identify and apply review criteria to selected parts of the code and identify issues in 
the code.  

5.2. Construct an appropriate CI pipeline for the software.  



5.3. Automate some aspects of the testing.  
5.4. Demonstrate the CI pipeline functions as expected.  

Thus, each of the grading elements is given a score in the range 0-5 and these are summed 
to give a mark on the range 0-20 for each of the learning outcomes.  These five marks are 
then summed according to the weights you have chosen for each learning outcome. To give 
a final score out of 100. 

Quizzes 
For each of the Learning Outcomes a quiz will be available towards the end of the teaching 
covering a particular learning outcome.  Typically, this will be on the Thursday of weeks 3, 5, 
7, 9, and 11.  Each quiz will be available for 12 hours 0800-2000 on the day and should take 
approximately 1 hour to complete.  Quizzes will be marked on a Pass/Fail basis.  Gaining 
marks of 40% and above on a quiz is deemed to be a Pass, otherwise it is a Fail.  The quizzes 
are not intended fully to assess the Learning Outcome they just indicate an acceptable level 
of competence in the Learning Outcome.  High marks on a quiz should not be interpreted as 
indicating high attainment since they do not cover more challenging aspects.  A mark of 40% 
and 100% have the same interpretation, i.e. Pass. 
 
The quizzes are a means of ensuring basic competence in each of the learning outcomes.  
So, if you have passed the quiz for a particular learning outcome you can return a mark of 
no less than 2 out of 5 for each of the sub-criteria for that learning outcome.  This means 
that if you only complete the quizzes and pass each one you will gain a mark of 40% (i.e. a 
bare pass) overall. 

  



Your Portfolio 
In this section we will illustrate the construction of your portfolio.  The portfolio is a 
summary of the work you have done. We anticipate it will contain many pointers to work 
you have done but it should be kept short and should be 3 pages in length with normal 
margins line spacing and font larger than 10 point.  The portfolio should be structured 
according to the marking scheme.  The portfolio will be submitted to a Turnitin on the 
course LEARN page.  In addition to submitting you should also submit a self-assessment 
following this form. 
 
We will illustrate the completion of the portfolio using an imaginary project that has the 
following characteristics: 
 
OrderBot:  OrderBot is intended to receive orders for items drawn from a catalogue of 
items (e.g. they could be food items or books, or other consumer goods).  It has the 
following behaviour: 

• It receives a mobile number and order message.  It parses the message and responds 
either with a failure or success message.  The success message will include a unique 
order identifier that is associated with the order. 

• On request, it generates a summary list of outstanding orders one line per mobile 
number with the list of items ordered by that mobile number - this should be in 1-1 
correspondence with the orders received that have not yet been actioned.  The list 
will include the unique order identifier for each order. 

• It receives an order identifier, and authorization code and marks that order as having 
been fulfilled so it no longer appears in the list of outstanding orders. 

1. Analyze requirements to determine appropriate testing strategies  

1.1. Range of requirements, functional requirements, measurable quality attributes, 
qualitative requirements, … Under this section you would be expected to point to a 
document that lists the requirements you plan to test for and that this covers a 

range of different types of requirement e.g., functional requirements, performance 
attributes and requirements, security requirements or robustness requirements.  
Your justification for an allocated grade would be that you have reasonable diversity 
of requirements.  Awarding above 4 would require very strong evidence. 

1.2. Level of requirements, system, integration, unit.  Here you would need to 
demonstrate that you have considered a range of requirements that cover different 
levels of concern.  In the case of the bot this might include: some system level 
requirements, e.g., that it responds correctly to messages, some unit level 
requirements e.g., that the parsing works correctly, rejecting malformed messages, 
accepting good ones. You might also conder some integration requirements e.g., 
that parsing integrates with message reading so you can read and accept or reject 
messages.  Performance requirements could include that responses are fast enough 
that the parsing is efficient enough.  For security, that the system is not susceptible 
to SQL injection. You might also consider things like robustness to failure of 

components or failure of an externally provided service. 
1.3. Identifying test approach for chosen attributes. You will learn a range of testing 

approaches during the course. This part of the grading will assess the range of 

https://forms.office.com/e/LqUpbx3xeA


techniques and how well they match the requirements you are working with.  For 
OrderBot this might include unit tests that cover the correctness of the parser, 
integration testing to see if components integrate properly and system level testing 

that checks the system delivers the service the user requires.  You might also 
consider forms of statistical testing to assess performance characteristics.  Timing 
tests if the system has real time requirements. 

1.4. Assess the appropriateness of your chosen testing approach.  This is an overall 
assessment of how well matched your choices of test are to ensuring your 
requirements. Here you would look at the overall match of the requirements to the 
types of tests. For OrderBot you might consider each of the chosen test types and 
identify potential deficiencies in your choice of test for the requirement. To get a 
good grade here you do not need to have a perfect choice of test type, 
understanding the limitations of your approach is as important as having a perfect 
match.  For example, you may devise tests for the parser that do not include SQL 
injection resistance tests because you know the implementation will not use a 

database.  This is a valid choice, but it might be a weakness for parsers that are 
susceptible to such compromises. 

2. Design and implement comprehensive test plans with instrumented code. Section 2.4 
asks you to evaluate how adequate you think the instrumentation is.  For example, in 
the OrderBot you might decide that the order tracking should have been timestamped 
and feel this is a deficiency. 
2.1. Construction of the test plan: Here we are recommending a Test-Driven Design 

approach so, in some sense your test plan will be the approach you take to deciding 
on how to evolve your test set as the need for functionality evolves in your chosen 
project. For example, in the OrderBot case, suppose you identify the requirement 
that a user should be able to check what outstanding orders they have at any given 

time. How does this change the test set? Does this change the system level tests? 
How should such tests prompt the consideration of other tests? Are there 
performance-related tests that should be carried out?  The portfolio should point to 

documentation for your planning and how this has developed the test set through 
the life of your project.   

2.2. Evaluation of the quality of the test plan: In section 2.2 you should identify 
strengths and weaknesses of the final way you carried out testing.  Often you will 
need to make observations of the behaviour of the code that involve 
“instrumenting” the code (e.g., with assert statements or by output to a diagnostic 
stream). 

2.3. Instrumentation of the code: You should observe how much instrumentation you 
implemented and justify this (so if you have done none you should justify this by 
pointing out it was unnecessary for your requirements).  For the OrderBot you 
might need to add diagnostic output to enable tracking of orders to ensure none are 
lost.   

2.4. Evaluation of the instrumentation: You should evaluate how adequate you think the 
instrumentation is.  For example, in the OrderBot you might decide that the order 

tracking should have been timestamped and can justify that this is a deficiency. 
3. Apply a wide variety of testing techniques and compute test coverage and yield 

according to a variety of criteria.  



3.1. Range of techniques: In this section for OrderBot we would first argue that a 
selection of functional tests had been implemented and a range of quality attributes 
tested and argue that these are adequate to give assurance that the requirements 

have been met.  For example, we may have used some sort of stress testing to 
check it can deal with a particular level of demand.   

3.2. Evaluation criteria for the adequacy of the testing: Here you would justify that a 
proposed strategy of evaluation is adequate.  For example, that, amongst other 
things, a code coverage measures gives us reasonable confidence that the OrderBot 
parser is acceptable in terms of correctness and resilience to error.   

3.3. Results of testing: This points to the results of the test and checks they are 
presented in a way that indicates they are comprehensive and easily interpretable.  

3.4. Evaluation of the results: Here you should provide the evaluation results using the 
proposed techniques.  Your portfolio would assess how complete these results and 
evaluations are. 

4. Evaluate the limitations of a given testing process, using statistical methods where 

appropriate, and summarise outcomes. This section should be a short discussion of the 
testing process identifying deficiencies, reviewing the achieved levels of test, how these 

levels might be increased and how much confidence the testing gives you in the 
software.  For the OrderBot example this might identify that it was impossible 
adequately to test availability because these was no good characterisation of the 
operation of the system.  Perhaps using mutation testing could provide an estimate of 
the number of residual faults. 
4.1. Identifying gaps and omission in the testing process 
4.2. Identifying target coverage/performance levels for the different testing procedures  
4.3. Discussing how the testing carried out compares with the target levels 
4.4. Discussion of what would be necessary to achieve the target levels. 

5. Conduct reviews and inspections and design and implement automated testing 
processes.  This section should provide pointers and a brief discussion to the review 
procedures you adopted along with some commentary on their adequacy.  5.2-5.4 

should describe the design of a  CI pipeline you would have built had time been available 
and assess the extent to which the proposed automated testing would identify issues in 
your code and some a description of what evidence would be necessary to demonstrate 
your proposed CI pipeline would operate as expected. 
5.1. Identify and apply review criteria to selected parts of the code and identify issues in 

the code. 
5.2. Construct an appropriate CI pipeline for the software 
5.3. Automate some aspects of the testing 
5.4. Demonstrate the CI pipeline functions as expected. 


	System under test
	Weighting
	Portfolio Structure and Grading
	Quizzes

	Your Portfolio

