
Test Automation and Code
Review

Based on slides developed by Ian Sommerville and on GitLab CI

Test Automation

• Automated testing is based on the idea that tests should be
executable.
• An executable test includes the input data to the unit that is being

tested, the expected result and a check that the unit returns the
expected result.
• You run the test and the test passes if the unit returns the expected

result.
• Normally, you should develop hundreds or thousands of executable

tests for a software product (or at least automate the production of
such tests)

Automated TestingFigure 9.4 Automated testing

Test
runner

Code
being tested

Testing
framework

Files of executable tests

Test
report

Example

• The environment is already set
up, e.g. the database with orders
and users.
• The automated test sets up the

parameters,
• Executes the function under

test.
• Expects a particular return value.

Automated Tests

• It is good practice to structure automated functional tests into three parts:
• Arrange You set up the system to run the test. This involves defining the test

parameters and, if necessary, mock objects that emulate the functionality of code
that has not yet been developed (some of this is in the environment spanning many
tests).

• Action You call the unit that is being tested with the test parameters.
• Assert You make an assertion about what should hold if the unit being tested has

executed successfully.
• If you use category partition to specify tests, ideally you should have

several automated tests based on correct and incorrect inputs from each
partition.
• A test runner will run all of the tests (based on the scripts in the package

description in the case of the JavaScript project). For a tutorial on the basic
details for Jest, see: https://www.valentinog.com/blog/jest/

https://www.valentinog.com/blog/jest/

Test Pyramid

Unit tests

Feature tests

System
tests

Increased automation
Reduced costs

Figure 9.5 The test pyramid

Automated system testing

• Often, users access features through the system’s graphical user
interface (GUI).
• However, GUI-based testing is expensive to automate so it is best to

design your system so that its features can be directly accessed
through an API and not just from the user interface.
• Tests can then access features directly through the API without the

need for direct user interaction through the system’s GUI.
• Accessing features through an API has the additional benefit that it is

possible to re-implement the GUI without changing the functional
components of the software (separating concerns).

Using an API for Testing Features

Feature 1

Feature 3 Feature 4

Feature 2

API

Browser or mobile app interface

Figure 9.6 Feature testing through an API

Feature
tests

System Testing

• System testing involves verifying system requirements that may involve
simulating user behaviour.
• System tests, involve some sort of UI as the way users will access the

features of the system
• You are looking for interactions between features that cause problems,

sequences of actions that lead to system crashes and so on.
• Manual system testing, when testers have to repeat sequences of actions,

is boring and error-prone. In some cases, the timing of actions is important
and is practically impossible to repeat consistently.
• Testing tools have been developed that record UI gestures and automatically replay

these when a system is required – this can take the repetition out of system test

Gesture Capture for System Test

System being tested

System API

Interaction
session record

User action
recording

User action
playback

Figure 9.7 Interaction recording and playback

Browser or mobile app interface

Test-driven development

• Test-driven development (TDD) advocates writing a executable tests
for code before you write the code. The test is a sort of specification.
• Early users of the Extreme Programming advocated TDD, but it can be

used with any incremental development approach.
• Test-driven development works best for the development of

individual program units and it is more difficult to apply to system
testing.
• Even the strongest advocates of TDD accept that it is challenging to

use this approach when you are developing and testing systems with
graphical user interfaces.

Test Driven Development

Write code stub that
will fail test

Run all
automated tests

Implement code that
should cause failing test to pass

Identify partial implementation
of functionality

Functionality
complete

Functionality
incomplete

Refactor code
if required

All tests pass

Identify new
functionality

Run all
automated tests

Test failure

Figure 9.8 Test-driven development

Start

TDD Stages
• Identify partial implementation

Break down the implementation of the functionality required into smaller mini-units. Choose one
of these mini-units for implementation.

• Write mini-unit tests
Write one or more automated tests for the mini-unit that you have chosen for implementation.
The mini-unit should pass these tests if it is properly implemented.

• Write a code stub that will fail test
Write incomplete code that will be called to implement the mini-unit. You know this will fail.

• Run all existing automated tests
All previous tests should pass. The test for the incomplete code should fail.

• Identify partial implementation
Break down the implementation of the functionality required into smaller mini-units. Choose one
of these mini-units for implementation.

• Write mini-unit tests
Write one or more automated tests for the mini-unit that you have chosen for implementation.
The mini-unit should pass these tests if it is properly implemented.

• Write a code stub that will fail test
Write incomplete code that will be called to implement the mini-unit. You know this will fail.

• Run all existing automated tests
All previous tests should pass. The test for the incomplete code should fail.

TDD Benefits

• A systematic approach to testing, tests are clearly linked to sections in the
program code.
• Good confidence that tests cover all of the code and that there are no untested code

sections.
• The tests act as a written specification for the program code. It should be

possible to understand what the program does by reading the tests.
• Fault location may be simplified, when a program fails, you can

immediately link this to the last increment of code that you added to the
system (this failure could be uncovering a fault that needs fixing in the
already developed code).
• TDD can encourage simpler code. Programmers write code to be testable

because often they also construct the unit tests.

TDD Problems

• TDD can discourages radical program change
Significant change means more failed tests. If the number of passed tests
motivates the developer they will avoid generating lots of failures
• Tests are often insufficiently expressive

If we see tests as the specification then this can restrict what we spcify
because some things are hard to test
• If everything is “code” it’s hard to get a good overview

TDD can encourage a focus on details that might cause tests to pass or fail
and discourages large-scale program revisions.
• It is hard to write ‘bad data’ tests

Many problems involving dealing with messy and incomplete data. It is
practically impossible to anticipate all of the data problems that might arise
and write tests for these in advance.

Security testing

• Security testing aims to find vulnerabilities that may be exploited by
an attacker and to provide convincing evidence that the system is
sufficiently secure.
• The tests should demonstrate that the system can resist attacks on its

availability, attacks that try to inject malware and attacks that try to
corrupt or steal users’ data and identity.
• Comprehensive security testing requires specialist knowledge of

software vulnerabilities and approaches to testing that can find these
vulnerabilities (but there are still unknown unknowns).

Typical Security Hazards

• Unauthorized attacker gains access to a system using authorized
credentials
• Authorized individual accesses resources that are forbidden to them
• Authorized individual accesses resources they are authorized to see but

then releases them to unauthorised individuals.
• Authentication system fails to detect unauthorized attacker
• Attacker gains access to database using SQL poisoning attack
• Improper management of HTTP session
• HTTP session cookies revealed to attacker
• Confidential data are unencrypted
• Encryption keys are leaked to potential attackers

Hazard Analysis

• Once you have identified hazards, you then analyze them to assess how
they might arise. For example, an attacker gaining credentials there are
several possibilities:
• Weak passwords that can be guessed are in use.
• The user has not set up two-factor authentication.
• An attacker has discovered credentials of a legitimate user through social

engineering techniques.
• Once you have done this you can estimate likelihood and severity and you

have risks.
• You can then prioritise what to mitigate and consider test to further

characterise the risk.
• For example, you might include biometrics as part of the authorisation in mitigation.

Code reviews

• Code reviews involve one or more people examining the code to
check for errors and anomalies and discussing issues with the
developer.
• If problems are identified, it is the developer’s responsibility to

change the code to fix the problems.
• Code reviews complement testing. They are effective in finding bugs

that arise through misunderstandings and bugs that may only arise
when unusual sequences of code are executed.
• Many software companies insist that all code has to go through a

process of code review before it is integrated into the product
codebase.

Review Process

Review preparation

Programmer

Reviewer

Programmer

Discussion

Setup
review

Prepare
code

Distribute
code/tests

Write review
report

Code checking

Prepare
to-do list

Make code
changes

Review Follow-up

Figure 9.9 Code reviews

Reviewer

Check
code

Programmer

Review Activities
• Setup review

The programmer contacts a reviewer and arranges a review date.
• Prepare code

The programmer collects the code and tests for review and annotates them with information for the
reviewer about the intended purpose of the code and tests.

• Distribute code/tests
The programmer sends code and tests to the reviewer.

• Check code
The reviewer systematically checks the code and tests against their understanding of what they are
supposed to do.

• Write review report
The reviewer annotates the code and tests with a report of the issues to be discussed at the review meeting.

• Discussion
The reviewer and programmer discuss the issues and agree on the actions to resolve these.

• Make to-do list
The programmer documents the outcome of the review as a to-do list and shares this with the reviewer.

• Make code changes
The programmer modifies their code and tests to address the issues raised in the review.

Checklist for Review

• Are meaningful variable and function names used?
Meaningful names make a program easier to read and understand.
• Have all data errors been considered and tests written for them?

It is easy to write tests for the most common cases but it is equally important to
check that the program won’t fail when presented with incorrect data.
• Are all exceptions explicitly handled?

Unhandled exceptions may cause a system to crash.
• Are types used consistently?

If the language has a type system there should be conventions for its use that are
observed e.g. naming
• Is the code properly formatted?

There will be rules on how code should be displayed to avoid common difficulties
cause by jumbled presentation of code.

Continuous Integration

I vividly remember one of my first sightings of a large software
project. I was taking a summer internship at a large English
electronics company. My manager, part of the QA group, gave
me a tour of a site and we entered a huge depressing warehouse
stacked full with cubes. I was told that this project had been in
development for a couple of years and was currently
integrating, and had been integrating for several months. My
guide told me that nobody really knew how long it would take to
finish integrating. From this I learned a common story of
software projects: integration is a long and unpredictable
process.
Martin Fowler on “Integration”

Continuous Integration in GitLab

Continuous Integration in DevOps

CI Pipelines

Summary

• Testing should be automated as far as possible where there is low
value from human interaction.
• A risk-based approach can be helpful e.g. in security testing.
• Review complements test.
• There are quite complete automation tools now (e.g. GitLab).

