Functional testing

21/10/2024 Adapted Stuart Anderson from (c) 2007 Mauro Pezze & Michal Young Ch 10, slide 1

Learning objectives

* Be able to explain the rationale for systematic (non-random) selection
of test cases
* Be able to explain the principles of partition testing and its underlying
assumptions
* Be able to explain why functional test selection is a primary, base-line

technique

* Why we expect a specification-based partition to help select valuable test
cases

* Distinguish functional testing from other systematic testing
techniques

Functional testing

: Deriving test cases from program specifications

* Functional refers to the source of information used in test case design, not to what is
tested

* Also known as:
(from specifications)
(no view of the code)

* Functional specification = description of intended program behavior
* either formal or informal

Systematic vs Random Testing

(uniform):
* Pick possible inputs uniformly

* Avoids designer bias

* Areal problem: The test designer can make the same logical mistakes and bad
assumptions as the program designer (especially if they are the same person)

e But treats all inputs as equally valuable

(non-uniform):
* Try to select inputs that are especially valuable

» Usually by choosing representatives of classes that are apt to fail often or not
at all

* Functional testing is systematic testing

Why Not Random?

 Non-uniform distribution of faults

* Example: Java class “roots” applies quadratic equation:

_ —b= Vb2 — 4ac
- 2a

4

Incomplete implementation logic: Program does not properly handle the case
in which b2 - 4ac =0 and a=0

Failing values are sparse in the input space — needles in a very big haystack.
Random sampling is unlikely to choose a=0.0 and b=0.0

Consider the purpose of testing ...

* To estimate the proportion of needles to hay, sample randomly

* Reliability estimation requires unbiased samples for valid statistics. But that’s
not our goal!

* To find needles and remove them from hay, look systematically (non-
uniformly) for needles

e Unless there are a lot of needles in the haystack, a random sample will not be
effective at finding them

* We need to use everything we know about needles, e.g., are they heavier
than hay? Do they sift to the bottom?

Systematic Partition Testing

Failures are sparse in
the space of possible
[No failure inputs ...

... but dense in some
parts of the space

B Failure (valuable test case)

§ 0000000000 00 00 00 D540 00 00 80 80
3 00000000 000000EEO000000000O00
£x 00 O0O:00 O00O0:00 OO0 OO:m0:00:00 00 O0:00 O0:
UV 5 _::::::::::::::::::'.:::'.:::'.:g ERTTTRT SR :
=4 000000000000 000000000000:0000:
2 o O0o0o0ooo000ooooonononooononoo
qg_ :ch 00 oo I:II:II:II:I g s P I:II:II:II:II:II:II:II:II:II:I
o — O oo ponb b bbb b op op op:on oo
o [OO0000O000D0O0O0O0O0OOCOOEEO0O0OOoOn
¢ Ooooooonnooonooodocmm oo 0o oo oo:
- If we systematically test some cases Functional testing is one way of
from each part, we will include the drawing pink lines to isolate regions
dense parts with likely failures

The partition principle

* Exploit some knowledge to choose samples that are more likely to include
“special” or trouble-prone regions of the input space
* Failures are sparse in the whole input space ...
... but we may find regions in which they are dense

* (Quasi*-)Partition testing: separates the input space into classes whose union is
the entire space

* *Quasi because: The classes may overlap

* Desirable case: Each fault leads to failures that are dense (easy to find) in some
class of inputs

* sampling each class in the quasi-partition selects at least one input that leads to a failure,
revealing the fault

* seldom guaranteed; we depend on experience-based heuristics

Example of partitioning from I1SO 29119-2

A.2 Fragment of test basis

“The insurance quote system shall generate an accept message, a reject message or an accept with
excess warning message.

It will accept insurance applicants from the age of 18 and up to the age of 80 years on the day of
application based on their input age in whole years; all other inputs shall be rejected.

Accepted applicants of 70 and over shall be accepted but with a warning that in the event of a claim
they shall pay an excess.”

A.3 Test completion criterion

“The test completion criterion is that 100 % equivalence partition coverage is achieved, and all test
cases must result in a "pass” status on execution.”

21/10/2024 Adapted Stuart Anderson from (c) 2007 Mauro Pezze & Michal Young Ch 10, slide 9

Partitioning from ISO 20119-2

21/10/2024

A4 Testmodel (TD1)

Based on the test completion criterion, the test model in Figure A.1 showing the equivalence partitions

(with the black outlines) for the described system behaviour can be created.

(Insurance quote EPs \
4 1
(Input processing N 4 Internal processing \ Output processing
(Applicant age) f Specified functions) Output generated
Valid inputs [A
p Insurance result Insurance result
Integers = Accept, Reject or
In range 18 < Age <80 >Accept Excess Warning
4 Age <18) OR (Age >80))>Reject L)
Too low Too high
70 < Age <80 >Excess Warning
\ J
Non-integers \. J
Real Alpha | | Special
40 < Age <55 > Discount message
kL Invalid inputs) L Unspecified function

Figure A.1 — Equivalence partitions for the ‘insurance quote system’

Adapted Stuart Anderson from (c) 2007 Mauro Pezze & Michal Young

Ch 10, slide 10

Functional testing: exploiting the specification

* Functional testing uses the specification (formal or informal) to
partition the input space
e E.g., specification of “roots” program suggests division between cases with
zero, one, and two real roots
* Test each category, and boundaries between categories

* No guarantees, but experience suggests failures often lie at the boundaries
(as in the “roots” program)

Why functional testing?

* The base-line technique for designing test cases
* Timely
* Often useful in refining specifications and assessing testability before code is written
* Effective
* finds some classes of fault (e.g., missing logic) that can elude other approaches
* Widely applicable
* to any description of program behavior serving as spec
e at any level of granularity from module to system testing.

* Economical
 typically less expensive to design and execute than structural (code-based) test cases

Early functional test design

* Program code is not necessary
* Only a description of intended behavior is needed

* Even incomplete and informal specifications can be used
* Although precise, complete specifications lead to better test suites

* Early functional test design has side benefits
e Often reveals ambiguities and inconsistency in spec

e Useful for assessing testability
* And improving test schedule and budget by improving spec

» Useful explanation of specification
* orin the extreme case (as in XP), test cases are the spec

Functional versus Structural:
Classes of faults

* Different testing strategies (functional, structural, fault-based, model-
based) are most effective for different classes of faults

* Functional testing is best for missing logic faults
* A common problem: Some program logic was simply forgotten
 Structural (code-based) testing will never focus on code that isn’t there!

Functional vs structural test: granularity levels

* Functional test applies at all granularity levels:

* Unit (from module interface spec)

* |Integration (from API or subsystem spec)

* System (from system requirements spec)

* Regression (from system requirements + bug history)

e Structural (code-based) test design applies to relatively small parts of
a system:
* Unit
* |ntegration

Steps: From specification to test cases

e 1. Decompose the specification

* If the specification is large, break it into independently testable features to be considered in
testing

2. Select representatives

* Representative values of each input, or
* Representative behaviors of a model

» Often simple input/output transformations don’t describe a system. We use models in
program specification, in program design, and in test design

3. Form test specifications

e Typically: combinations of input values, or model behaviors

e 4. Produce and execute actual tests

From specification to test cases

~ Y
I\Functional Specifications |
- e

|

Identify

Independentl
Testable
Features

A4
N
[Independently Testable Feature |

) | e
&%*Ao, ooic Specicatio

2 S
\6@59, ® E) 4,,0'%
/QF‘Q Qg\\’ ‘7@/\
' 7
Brute | Representative Values j | Model j
Force - _ .
Testing N Geo O@'} 4
‘S xS
&, N &
)0@0/;«;6 Sy, \0‘1’0‘\00
(S & &

%,
s s e

A “ | P LV
. ! ‘ | Test Case Specifications
p. .

Generate
" Test Cases

Test Cases

Instantiate
Tests

Scaffolding

21/10/2024 Adapted Stuart Anderson from (c) 2007 Mauro Pezze & Michal Young Ch 10, slide 17

Simple example: Postal code lookup

UNITED STATES
’ POSTAL SERVICE.

010, B
7 &? ZIP Code Lookup

Search By Address » Search By City » Search By Company » Find

Find a list of cities that are in a ZIP Code.

* Required Fields '5-digit US
* ZIP Code | k g

ities

Submit >

* What are some
representative values (or
classes of value) to test?

Adapted Stuart Anderson from (c) 2007 Mauro Pezze & Michal
Young

Ch 10, slide 18

Example: Representative values

=~ UNITED STATES
B POSTAL SERVICE

Simple example with
one input, one output

Search By Address Search By City Search By Company Find

Find a list of cities that are in a ZIP Code.

* Required Fields
* ZIP Code

e Correct Z|p code Note prevalence of boundary
values (O cities, 6 characters) and
error cases

 With 0, 1, or many cities

* Malformed zip code
* Empty; 1-4 characters; 6 characters; very long
* Non-digit characters
* Non-character data

Adapted Stuart Anderson from (c) 2007 Mauro Pezze & Michal

Ch 10, slide 19
Young

Summary

* Functional testing, i.e., generation of test cases from specifications is
a valuable and flexible approach to software testing
» Applicable from very early system specs right through module specifications

Partition testing suggests dividing the input space into
equivalent classes

e Systematic testing is intentionally non-uniform to address special cases, error
conditions, and other small places

* Dividing a big haystack into small, hopefully uniform piles where the needles
might be concentrated

