
Functional testing

Adapted Stuart Anderson from (c) 2007 Mauro Pezzè & Michal Young Ch 10, slide 121/10/2024

Learning objectives

• Be able to explain the rationale for systematic (non-random) selection
of test cases
• Be able to explain the principles of partition testing and its underlying

assumptions
• Be able to explain why functional test selection is a primary, base-line

technique
• Why we expect a specification-based partition to help select valuable test

cases

• Distinguish functional testing from other systematic testing
techniques

Adapted Stuart Anderson from (c) 2007 Mauro Pezzè & Michal Young Ch 10, slide 221/10/2024

Functional testing

• Functional testing: Deriving test cases from program specifications
• Functional refers to the source of information used in test case design, not to what is

tested

• Also known as:
• specification-based testing (from specifications)
• black-box testing (no view of the code)

• Functional specification = description of intended program behavior
• either formal or informal

Adapted Stuart Anderson from (c) 2007 Mauro Pezzè & Michal Young Ch 10, slide 321/10/2024

Systematic vs Random Testing

• Random (uniform):
• Pick possible inputs uniformly
• Avoids designer bias

• A real problem: The test designer can make the same logical mistakes and bad
assumptions as the program designer (especially if they are the same person)

• But treats all inputs as equally valuable
• Systematic (non-uniform):
• Try to select inputs that are especially valuable
• Usually by choosing representatives of classes that are apt to fail often or not

at all
• Functional testing is systematic testing

Adapted Stuart Anderson from (c) 2007 Mauro Pezzè & Michal Young Ch 10, slide 421/10/2024

Why Not Random?

• Non-uniform distribution of faults
• Example: Java class “roots” applies quadratic equation:

Incomplete implementation logic: Program does not properly handle the case
in which b2 - 4ac =0 and a=0

Failing values are sparse in the input space — needles in a very big haystack.
Random sampling is unlikely to choose a=0.0 and b=0.0

Adapted Stuart Anderson from (c) 2007 Mauro Pezzè & Michal Young Ch 10, slide 521/10/2024

Consider the purpose of testing ...

• To estimate the proportion of needles to hay, sample randomly
• Reliability estimation requires unbiased samples for valid statistics. But that’s

not our goal!
• To find needles and remove them from hay, look systematically (non-

uniformly) for needles
• Unless there are a lot of needles in the haystack, a random sample will not be

effective at finding them
• We need to use everything we know about needles, e.g., are they heavier

than hay? Do they sift to the bottom?

Adapted Stuart Anderson from (c) 2007 Mauro Pezzè & Michal Young Ch 10, slide 621/10/2024

Systematic Partition Testing

Adapted Stuart Anderson from (c) 2007 Mauro Pezzè & Michal Young Ch 10, slide 7

Failure (valuable test case)
No failure

Failures are sparse in
the space of possible
inputs ...

... but dense in some
parts of the space

If we systematically test some cases
from each part, we will include the
dense parts

Functional testing is one way of
drawing pink lines to isolate regions
with likely failures

Th
e

sp
ac

e
of

 p
os

si
bl

e
in

pu
t v

al
ue

s
(t

he
 h

ay
st

ac
k)

21/10/2024

The partition principle

• Exploit some knowledge to choose samples that are more likely to include
“special” or trouble-prone regions of the input space
• Failures are sparse in the whole input space ...
• ... but we may find regions in which they are dense

• (Quasi*-)Partition testing: separates the input space into classes whose union is
the entire space

• *Quasi because: The classes may overlap

• Desirable case: Each fault leads to failures that are dense (easy to find) in some
class of inputs
• sampling each class in the quasi-partition selects at least one input that leads to a failure,

revealing the fault
• seldom guaranteed; we depend on experience-based heuristics

Adapted Stuart Anderson from (c) 2007 Mauro Pezzè & Michal Young Ch 10, slide 821/10/2024

Example of partitioning from ISO 29119-2

21/10/2024 Adapted Stuart Anderson from (c) 2007 Mauro Pezzè & Michal Young Ch 10, slide 9

Partitioning from ISO 20119-2

21/10/2024 Adapted Stuart Anderson from (c) 2007 Mauro Pezzè & Michal Young Ch 10, slide 10

Functional testing: exploiting the specification

• Functional testing uses the specification (formal or informal) to
partition the input space
• E.g., specification of “roots” program suggests division between cases with

zero, one, and two real roots
• Test each category, and boundaries between categories
• No guarantees, but experience suggests failures often lie at the boundaries

(as in the “roots” program)

Adapted Stuart Anderson from (c) 2007 Mauro Pezzè & Michal Young Ch 10, slide 1121/10/2024

Why functional testing?

• The base-line technique for designing test cases
• Timely

• Often useful in refining specifications and assessing testability before code is written
• Effective

• finds some classes of fault (e.g., missing logic) that can elude other approaches
• Widely applicable

• to any description of program behavior serving as spec
• at any level of granularity from module to system testing.

• Economical
• typically less expensive to design and execute than structural (code-based) test cases

Adapted Stuart Anderson from (c) 2007 Mauro Pezzè & Michal Young Ch 10, slide 1221/10/2024

Early functional test design

• Program code is not necessary
• Only a description of intended behavior is needed
• Even incomplete and informal specifications can be used

• Although precise, complete specifications lead to better test suites

• Early functional test design has side benefits
• Often reveals ambiguities and inconsistency in spec
• Useful for assessing testability

• And improving test schedule and budget by improving spec
• Useful explanation of specification

• or in the extreme case (as in XP), test cases are the spec

Adapted Stuart Anderson from (c) 2007 Mauro Pezzè & Michal Young Ch 10, slide 1321/10/2024

Functional versus Structural:
 Classes of faults
• Different testing strategies (functional, structural, fault-based, model-

based) are most effective for different classes of faults
• Functional testing is best for missing logic faults
• A common problem: Some program logic was simply forgotten
• Structural (code-based) testing will never focus on code that isn’t there!

Adapted Stuart Anderson from (c) 2007 Mauro Pezzè & Michal Young Ch 10, slide 1421/10/2024

Functional vs structural test: granularity levels

• Functional test applies at all granularity levels:
• Unit (from module interface spec)

• Integration (from API or subsystem spec)
• System (from system requirements spec)

• Regression (from system requirements + bug history)

• Structural (code-based) test design applies to relatively small parts of
a system:
• Unit
• Integration

Adapted Stuart Anderson from (c) 2007 Mauro Pezzè & Michal Young Ch 10, slide 1521/10/2024

Steps: From specification to test cases

• 1. Decompose the specification
• If the specification is large, break it into independently testable features to be considered in

testing

• 2. Select representatives
• Representative values of each input, or
• Representative behaviors of a model

• Often simple input/output transformations don’t describe a system. We use models in
program specification, in program design, and in test design

• 3. Form test specifications
• Typically: combinations of input values, or model behaviors

• 4. Produce and execute actual tests

Adapted Stuart Anderson from (c) 2007 Mauro Pezzè & Michal Young Ch 10, slide 1621/10/2024

From specification to test cases

Adapted Stuart Anderson from (c) 2007 Mauro Pezzè & Michal Young Ch 10, slide 1721/10/2024

Simple example: Postal code lookup

• Input: ZIP code (5-digit US
Postal code)
• Output: List of cities
• What are some

representative values (or
classes of value) to test?

Adapted Stuart Anderson from (c) 2007 Mauro Pezzè & Michal
Young Ch 10, slide 18

Example: Representative values

• Correct zip code
• With 0, 1, or many cities

• Malformed zip code
• Empty; 1-4 characters; 6 characters; very long
• Non-digit characters
• Non-character data

Adapted Stuart Anderson from (c) 2007 Mauro Pezzè & Michal
Young Ch 10, slide 19

Simple example with
one input, one output

Note prevalence of boundary
values (0 cities, 6 characters) and

error cases

Summary

• Functional testing, i.e., generation of test cases from specifications is
a valuable and flexible approach to software testing
• Applicable from very early system specs right through module specifications

• (quasi-)Partition testing suggests dividing the input space into (quasi-
)equivalent classes
• Systematic testing is intentionally non-uniform to address special cases, error

conditions, and other small places
• Dividing a big haystack into small, hopefully uniform piles where the needles

might be concentrated

Adapted Stuart Anderson from (c) 2007 Mauro Pezzè & Michal Young Ch 10, slide 2021/10/2024

