
Software Testing

Overview

Adapted from (c) 2007 Mauro Pezzè & Michal Young Ch 1, slide 1

Adapted Stuart Anderson from (c) 2007 Mauro Pezzè & Michal
Young Ch 1, slide 2

Adapted Stuart Anderson from (c) 2007 Mauro Pezzè & Michal
Young Ch 1, slide 3

Adapted Stuart Anderson from (c) 2007 Mauro Pezzè & Michal
Young Ch 1, slide 4

Learning objectives

• Be able to describe the role of software quality in the specification,
design/construction, and operation of software.
• Be able to outline the main software verification and validation

activities.
• Be able to identify some key criteria for selecting and combining

different techniques used in software quality assurance.

Adapted Stuart Anderson from (c) 2007 Mauro Pezzè & Michal
Young Ch 1, slide 5

Engineering processes

• Focus of Engineering Processes
• Ensuring the product is fit for purpose in use
• Ensuring the process is reproduceable
• Reflecting on and improving the process

• Engineering Processes
• Aim to build the right thing (validation) – meets the needs of use
• Aim to build the thing right (verification) – the thing you built does what you want
• Collect data throughout specification, design/construction, operation to: improve the

product, improve the engineering process
• Software Engineering:

• Works with products that are deeply embedded in organisations and people’s lives,
so:
• Needs change continuously in many contexts
• Processes need to be responsive: Agile, DevOps, Continuous Integration/Deployment,

Adapted Stuart Anderson from (c) 2007 Mauro Pezzè & Michal
Young Ch 1, slide 6

Software Quality in the Engineering Process

• Software Quality Assurance (SQA) is increasingly embedded in all aspects of
the Engineering process because the later quality problems are recognized the
more costly it is to fix them.
• This embedding is in practices such as:

• Test driven development: tests are the specification (roughly speaking)
• DevOps uses data collected from operation to:

• Continuously validate the requirements and recognize requirement change.
• Identify software quality issues.

• The software engineering process involves:
• Identifying and validating requirements using operational data and other sources
• Constructing the means to verify the product meets the requirement (e.g. tests)
• Developing a verified product (e.g. Test Driven Design)
• Deploying the product and gathering operational data to inform decisions on

development (and more)

Adapted Stuart Anderson from (c) 2007 Mauro Pezzè & Michal
Young Ch 1, slide 7

Example proto-AirBnB

• This is intended to be realistic without being a historically accurate
account:
• Proto-AirBnB was mainly aimed at sofa surfers of people who wanted a very cheap

room and the user community had quite high trust of each other.
• Proto-AirBnB expanded to a much larger population with a wider range of

accommodation.
• Scammers started to appear, and operational data suggested that this was

increasing.
• Validation against operational data identified a missing requirement, that people

needed to be accurately identified.
• Users are required to be fully identified – spec developed – tests developed
• New version with this feature is deployed – operational data sees decline in scams.
• [Do you see any issue in requiring people to upload a passport image and have it

verified?]

Adapted Stuart Anderson from (c) 2007 Mauro Pezzè & Michal
Young Ch 1, slide 8

Adapted Stuart Anderson from (c) 2007 Mauro Pezzè & Michal
Young Ch 1, slide 9

Challenges of Software
• For many systems there are also many stakeholders often with competing

and conflicting requirement (can you think of examples?)
• Systems might depend on unreliable infrastructure (e.g. libraries, operating

systems, comms, …)
• Software often has complex, exploitable, errors e.g. buffer overruns, “one

off” issues in the use of arrays (e.g. UoE ISG mail problem)
• Software is often ”open” to a wide range of potential users and abusers.

Example
• If an elevator can safely carry a load of 1000 kg - it can also safely carry any smaller load
• a service may work perfectly most of the time but:

• It might fail because some service it uses has failed or is insufficiently resourced
• It might fail because of a denial of service attack.
• It may not adequately check for SQL injection and will fail under some circumstances

Adapted Stuart Anderson from (c) 2007 Mauro Pezzè & Michal
Young Ch 1, slide 10

Software can have users with conflicting needs

Adapted Stuart Anderson from (c) 2007 Mauro Pezzè & Michal
Young Ch 1, slide 11

New technologies

• New Technologies
• Can reduce error e.g. Natural Language AI models can do very accurate

autocomplete so avoiding a range of issues
• But can lead to errors of over reliance or introduce new issues e.g. some of

the Natural Language models can be quite racist depending on their training.

• New development approaches can introduce new kinds of faults
examples

• Machine Learning introduces a wide range of ethical issues.
• Poorly designed web services can be subject to a wide range of resource

issues.

Adapted Stuart Anderson from (c) 2007 Mauro Pezzè & Michal
Young Ch 1, slide 12

Adapted Stuart Anderson from (c) 2007 Mauro Pezzè & Michal
Young Ch 1, slide 13

Choosing Approaches

• Particular domains will have established practice and often will have
standards or regulation to comply with.
• Test designers must

• Design the testing process
• To assure the required level of quality
• Meet the cost constraints (notice that this may be impossible)

• Design a specific solution that suits
• the problem
• the requirements
• the development environment

• Have a look at the risks Forum: http://catless.ncl.ac.uk/risks/ for
example see this: http://catless.ncl.ac.uk/Risks/33/44#subj6

Adapted Stuart Anderson from (c) 2007 Mauro Pezzè & Michal
Young Ch 1, slide 14

http://catless.ncl.ac.uk/risks/
http://catless.ncl.ac.uk/Risks/33/44

Five Basic Engineering Questions

1. What is the role of software quality assurance in development
processes?

2. Software quality assurance has a range of techniques – how do we
choose where to use them?

3. What does it mean for a product to be “ready”?
4. How do we maintain the quality of the product as it evolves in line

with the contexts of use?
5. Why and how can the process be improved?

• Identifying process issues
• Fixing process issues

Adapted Stuart Anderson from (c) 2007 Mauro Pezzè & Michal
Young Ch 1, slide 15

Q1:What is the role of SQA in development
processes?
• SQA starts as soon as we start to consider making a software product

• The quality we aim for has an impact on cost, time to completion, customer
satisfaction, product liability, … so we must start looking at SQA from when
we initiate a project

• SQA is necessary through whole lifetime of the product, including any
decommissioning activity (decommissioning can be tricky) because:
• The world changes and so the specification changes to adapt the behaviour of

the product to its environment.
• The infrastructure underpinning the production process and the product in

operation will change over time and we need to assure the quality of the
product is maintained.

Adapted Stuart Anderson from (c) 2007 Mauro Pezzè & Michal
Young Ch 1, slide 16

Early start: from feasibility study

• The feasibility study of a new project must take into account the
required qualities and their impact on the overall cost
• At this stage, quality-related activities include

• risk analysis
• measures needed to assess and control quality at each stage of development.
• assessment of the likely evolution of the product and its quality
• contribution of quality control activities to development cost and schedule.

Adapted Stuart Anderson from (c) 2007 Mauro Pezzè & Michal
Young Ch 1, slide 17

Continuous Integration and Deployment

• Many systems evolve continuously and are deployed continuously to
add new features to the system of to fix issues identified in operation
or by SQA activities. Typical activities include:
• Analysis of customer requests, operational data, to identify new requirements
• Mapping those requirements to SQA elements like tests
• Embed the new SQA elements into the development process

• For example, if a new feature has been identified it may be appropriate to branch the
development, extend the requirements and corresponding tests and develop until the
system passes all tests and then merge back into the main development.

Adapted Stuart Anderson from (c) 2007 Mauro Pezzè & Michal
Young Ch 1, slide 18

2: Software quality assurance has a range of
techniques – how do we choose where to use them?
No single SQA technique can serve all purposes
We choose a technique appropriate for the quality we are trying to assure:

• Effectiveness for different features
example: statistical testing for bias in machine learning versus functional testing to assure
safety

• Applicability at different points in a project
example: analysis of operational data to identify missing functions

• Differences in purpose
example: statistical testing to measure reliability

• Tradeoffs in cost and assurance
example: for key features it may be necessary to commit high levels of resource to assure
high confidence that the system has the feature (e.g. for some avionic systems the standard
requires fewer than one failure in 109 flying hours)

Adapted Stuart Anderson from (c) 2007 Mauro Pezzè & Michal
Young Ch 1, slide 19

SQA in the lifecycle

• Fig 1.1 of Y&P gives a detailed
breakdown of activities across a
classical lifecycle.
• DevOps is far more common

now.
• How do you think the “map”

provided by Fig 1.1 translates
onto a DevOps lifecycle?
• We will discuss next lecture.

Adapted Stuart Anderson from (c) 2007 Mauro Pezzè & Michal
Young Ch 1, slide 20

Adapted Stuart Anderson from (c) 2007 Mauro Pezzè & Michal
Young Ch 1, slide 21

3: What does it mean for a product to be
“ready”?
• SQA is aimed at assuring that the product is fit for purpose:

• Software for an autonomous vehicle has different criteria from
• A simple game for a phone

• Software can deviate from the specification in a range of ways e.g. it may fail in
some way, it may fail to meet a requirement on some measurable feature (e.g.
performance, mean time to failure, mean time to repair, …)

• For example, software contains a collection of “faults” that are caused by
incorrect programming or other issue, if they are executed, they may result in in
an erroneous state and after some time the system may fail as a consequence of
the erroneous state.

• SQA is resource bounded in most cases, so this places limits on Quality
• In a DevOps environment the test set typically includes tests corresponding to

ALL requirements (including measure on attribute) so passing the tests is the
stage when the product is ready.

Adapted Stuart Anderson from (c) 2007 Mauro Pezzè & Michal
Young Ch 1, slide 22

Specifications often include dependability

• Availability measures the quality of service in terms of running versus
down time
• Mean time between failures (MTBF) measures the quality of the

service in terms of time between failures
• Reliability indicates the fraction of all attempted operations that

complete successfully

Adapted Stuart Anderson from (c) 2007 Mauro Pezzè & Michal
Young Ch 1, slide 23

Dependability – how to define?

• In a Web application users take 50 interactions to reach the final point
where they authorize a credit card charge.
• The software always operates flawlessly up to the point of

authorization, but on half the attempts it charges the wrong amount.
• What is the reliability of the system?
• If we count the fraction of individual interactions that are correctly

carried out, only one operation in 100 fail: The system is 99% reliable.
• If we count entire sessions, only 50% reliable, since half the sessions

result in an improper credit card charge

Adapted Stuart Anderson from (c) 2007 Mauro Pezzè & Michal
Young Ch 1, slide 24

4: How do we maintain the quality of the product
as it evolves in line with the contexts of use?
• Software products operate for many years, and may change on a daily

basis (e.g. Microsoft Teams…):
• They adapt to environment changes
• They evolve to serve new and changing user requirements.

• In DevOps processes
• The QA is continually update to be in line with the specification
• The DevOps process should define what data should be collected and how it

needs to be interpreted.
• The QA mechanisms to some extent “document” the software.
• The QA mechanisms could be adequate to demonstrate the software

complies with regulations

Adapted Stuart Anderson from (c) 2007 Mauro Pezzè & Michal
Young Ch 1, slide 25

5: How can the development process itself be
improved?
• Why change the development process? If in multiple projects the

product is demonstrably not meeting the specification.
• How might this arise?

• The translation of a specification to some QA technique is flawed.
• There are issues in the implementation of the QA process
• There are resource issues and insufficient resource is being devoted to QA

processes.

• Also, the development process should be reviewed to eliminate
unnecessary resource use e.g. duplication, use of a high resource
technique where a lower resource approach would be adequate,…

Adapted Stuart Anderson from (c) 2007 Mauro Pezzè & Michal
Young Ch 1, slide 26

Improving a DevOps process

1. Monitoring will typically include anomaly reporting along with a
range of other behavioural data.

2. Analyze monitoring data to identify recurring anomalies that impair
the deployed version of the system.

3. Analyze the gathered data on the anomalies – if the data does not
allow the cause of the anomalies, analyze the situation and change
the monitoring data and analysis process.

4. Implement the change of process and monitor it retains
effectiveness on past cases.

Adapted Stuart Anderson from (c) 2007 Mauro Pezzè & Michal
Young Ch 1, slide 27

An example of process improvement

1. During operation monitoring identifies attempts at SQL injection by
a range of users.

2. Analysis identifies specific circumstance where this could lead to
loss of data

3. Action plan: Identify components that could be vulnerable to SQL
injection and require that systems using these components include
mandatory SQL injection tests.

Adapted Stuart Anderson from (c) 2007 Mauro Pezzè & Michal
Young Ch 1, slide 28

Summary

• The quality assurance process has three different goals:
• Improving a software product
• assessing the quality of the software product
• improving the quality process

• We need to combine several SQA techniques through the software process
• Choice of techniques depend on organization and application domain.
• Cost-effectiveness depends on the extent to which techniques can be re-applied

as the product evolves.
• Planning and monitoring are essential to evaluate and refine the quality process.

Adapted Stuart Anderson from (c) 2007 Mauro Pezzè & Michal
Young Ch 1, slide 29

Adapted Stuart Anderson from (c) 2007 Mauro Pezzè & Michal
Young Ch 1, slide 30

