
08/10/2024 Updated by Stuart Anderson (c) 2007 Mauro Pezzè & Michal Young Ch 20, slide 1

Planning and Monitoring the Process

Updated by Stuart Anderson (c) 2007 Mauro Pezzè & Michal Young Ch 20, slide 208/10/2024

Learning objectives

• Be able to explain the role of monitoring in planning
• Be able to distinguish strategies from plans and illustrate how a plan

is derived from a strategy
• Given a plan be able to provide examples of risks arising in plans
• Given a quality process, be able to identify the role of monitoring in

the quality process
• Be able to explain the role of team organization in planning

Updated by Stuart Anderson (c) 2007 Mauro Pezzè & Michal Young Ch 20, slide 308/10/2024

What are Planning and Monitoring?

• Planning:
• Scheduling activities (what steps? in what order?)
• Allocating resources (who will do it?)
• Devising clear milestones for monitoring

• Monitoring: Measuring key process attributes of the process
• What do the measures tell about progress against the plan?

• A good plan must have visibility :
• Ability to monitor key indicators, and to make informed judgments of

progress against the plan
• Ability to justify where we are in the plan and what progress has been made.

Updated by Stuart Anderson (c) 2007 Mauro Pezzè & Michal Young Ch 20, slide 408/10/2024

Quality and Process

• Quality process: Set of activities and responsibilities
• focused primarily on ensuring adequate quality
• concerned with project schedule or with product usability

• A framework for
• selecting and arranging activities
• considering interactions and trade-offs

• Follows the overall software process in which it is embedded
• Example: waterfall software process ––> “V model”: unit testing starts with implementation

and finishes before integration
• Example: XP and agile methods ––> emphasis on unit testing and rapid iteration for

acceptance testing by customers
• Example: DevOps CI/CD includes elements of validation as data is collected from operation

Updated by Stuart Anderson (c) 2007 Mauro Pezzè & Michal Young Ch 20, slide 508/10/2024

Example Process: Cleanroom

Updated by Stuart Anderson (c) 2007 Mauro Pezzè & Michal Young Ch 20, slide 6

Customer Requirements

Specification
Function Usage

Incremental
Development

Planning
Statistical test case

generation

Usage specifications

Formal Design
Correctness Verification

Functional specifications

Statistical testing
Source code Test cases

Quality Certification Model

MTTF statistics

Interfail times

Improvement Feedback

08/10/2024

Example Process: Cleanroom

Updated by Stuart Anderson (c) 2007 Mauro Pezzè & Michal Young Ch 20, slide 7

Customer Requirements

Specification
Function Usage

Incremental
Development

Planning
Statistical test case

generation

Usage specifications

Formal Design
Correctness Verification

Functional specifications

Statistical testing
Source code Test cases

Quality Certification Model

MTTF statistics

Interfail times

Improvement Feedback

Activities and
responsibilities focused on

quality

Integrated into an overall
development process

08/10/2024

08/10/2024 Updated by Stuart Anderson (c) 2007 Mauro Pezzè & Michal Young Ch 20, slide 8

Example Process: Software Reliability Engineering Testing
(SRET)

Updated by Stuart Anderson (c) 2007 Mauro Pezzè & Michal Young Ch 20, slide 9

Define “Necessary”
Reliability

Requirements and
Architecture

Design and
Implementation

System Test and
Acceptance Test

Development
Operational Profiles

Prepare
for Testing

Execute
tests

Interpret Failure
Data

08/10/2024

Software Reliability Engineering Testing (SRET)

Updated by Stuart Anderson (c) 2007 Mauro Pezzè & Michal Young Ch 20, slide 10

Define “Necessary”
Reliability

Requirements and
Architecture

Design and
Implementation

System Test and
Acceptance Test

Development
Operational Profiles

Prepare
for Testing

Execute
tests

Interpret Failure
Data

Activities and
responsibilities focused on

quality

Integrated into an overall
development process

08/10/2024

Example Process: Extreme Programming (XP)

Updated by Stuart Anderson (c) 2007 Mauro Pezzè & Michal Young Ch 20, slide 11

Generate User
Stories

Create Unit
Tests

Pair
Programming
+ unit testing

Create
Acceptance

Tests

Incremental
Release

pass

Next version
Review,
Refine,

prioritize

Acceptance
Testing

Passed all
unit tests

Passed all unit tests

Failed acceptance test

08/10/2024

Extreme Programming (XP)

Updated by Stuart Anderson (c) 2007 Mauro Pezzè & Michal Young Ch 20, slide 12

Generate User
Stories

Create Unit
Tests

Pair
Programming
+ unit testing

Create
Acceptance

Tests

Incremental
Release

pass

Next version
Review,
Refine,

prioritize

Acceptance
Testing

Passed all
unit tests

Passed all unit tests

Failed acceptance test

Activities and
responsibilities focused on

quality

Integrated into an overall
development process

08/10/2024

DevOps

08/10/2024 Updated by Stuart Anderson (c) 2007 Mauro Pezzè & Michal Young Ch 20, slide 13

Use monitoring data and other
sources to identify quality

issues and inform next steps

Gathering key
behavioural
data to help

assess quality
and inform

development

Using gathered
data for statistical
testing with “real-

world” data

New functionality
plus new

monitoring code
plus tests to justify

deployment

08/10/2024 Updated by Stuart Anderson (c) 2007 Mauro Pezzè & Michal Young Ch 20, slide 14

Overall Organization
of a Quality Process
• Key principle of quality planning

• the cost of detecting and repairing a fault increases as a function of time
between creating the fault and detecting it (e.g the time is zero if we are
perfect)

• therefore ...
• an efficient quality plan includes matched sets of intermediate validation and

verification activities that detect most important faults within a short time of
their introduction [limits on resource mean we need to focus on important
faults]

• and ...
• V&V steps depend on the intermediate work products and on their

anticipated defects

Updated by Stuart Anderson (c) 2007 Mauro Pezzè & Michal Young Ch 20, slide 1508/10/2024

Verification Steps for Intermediate Artifacts

• Internal consistency checks
• compliance with structuring rules that define “well-formed” artifacts of that type
• a point of leverage: define syntactic and semantic rules thoroughly and precisely enough that

many common errors result in detectable violations
• Structural rules + frameworks can often simplify the testing of software

• External consistency checks
• consistency with related artifacts
• Often: conformance to a “prior” or “higher-level” specification

• Generation of correctness conjectures
• Correctness conjectures: lay the groundwork for external consistency checks of other work

products
• Often: motivate refinement of the current product

Updated by Stuart Anderson (c) 2007 Mauro Pezzè & Michal Young Ch 20, slide 1608/10/2024

Strategies vs Plans

Strategy Plan

Scope Organization Project

Structure
and content
based on

Organization structure,
experience and policy
over several projects

Standard structure
prescribed in
strategy

Evolves Slowly, with
organization and policy
changes

Quickly, adapting to
project needs

Updated by Stuart Anderson (c) 2007 Mauro Pezzè & Michal
Young Ch 20, slide 17

Test and Analysis Strategy

• Lessons of past experience
• an organizational asset built and refined over time – particularly if the

organization develops a line of similar products
• Body of explicit knowledge

• more valuable than islands of individual competence or tacit knowledge
• amenable to improvement
• reduces vulnerability to organizational change (e.g., loss of key individuals)

• Essential for
• avoiding recurring errors
• maintaining consistency of the process
• increasing development efficiency

08/10/2024 Updated by Stuart Anderson (c) 2007 Mauro Pezzè & Michal Young Ch 20, slide 18

Fitting a Strategy to an Organization

• Structure and size
• example

• Distinct quality groups in large organizations, overlapping of roles in smaller organizations
• greater reliance on documents in large than small organizations

• Overall process
• example

• Cleanroom requires statistical testing and forbids unit testing
• fits with tight, formal specs and emphasis on reliability

• XP prescribes “test first” and pair programming
• fits with fluid specifications and rapid evolution

• Application domain
• example

• Safety critical domains may impose particular quality objectives and require documentation for
certification (e.g,RTCA/DO-178B standard requires MC/DC coverage – a particular type of structural test)

Updated by Stuart Anderson (c) 2007 Mauro Pezzè & Michal Young Ch 20, slide 1908/10/2024

Elements of a Strategy

• Common quality requirements that apply to all or most products
• clear definition and measures

• Set of documents normally produced during the quality process
• contents and relationships

• Activities prescribed by the overall process
• standard tools and practices

• Guidelines for project staffing and assignment of roles and
responsibilities
• See technical debt: https://en.wikipedia.org/wiki/Technical_debt

strategies typically try to avoid this

Updated by Stuart Anderson (c) 2007 Mauro Pezzè & Michal Young Ch 20, slide 2008/10/2024

https://en.wikipedia.org/wiki/Technical_debt

Test and Analysis Plan

Answer the following questions:
• What quality activities will be carried out?
• What are the dependencies among the quality activities and between

quality and other development activities?
• What resources are needed and how will they be allocated?
• How will both the process and the product be monitored?
• There can be considerable variability in the order in which activities

are carried out as long as the dependencies are respected.

Updated by Stuart Anderson (c) 2007 Mauro Pezzè & Michal Young Ch 20, slide 2108/10/2024

Main Elements of a Plan

• Items and features to be verified
• Scope and target of the plan

• Activities and resources
• Constraints imposed by resources on activities

• Approaches to be followed
• Methods and tools

• Criteria for evaluating results

Updated by Stuart Anderson (c) 2007 Mauro Pezzè & Michal Young Ch 20, slide 2208/10/2024

Quality Goals

• Expressed as properties satisfied by the product
• must include metrics to be monitored during the project
• example: a new release of the product must undergo canary testing with

successively larger populations before full release
• not all details are available in the early stages of development

• Initial plan
• based on incomplete information
• incrementally refined

Updated by Stuart Anderson (c) 2007 Mauro Pezzè & Michal Young Ch 20, slide 2308/10/2024

Task Schedule

• Initially based on
• quality strategy
• past experience

• Breaks large tasks into subtasks
• refine as process advances

• Includes dependencies
• among quality activities
• between quality and development activities

• Guidelines and objectives:
• schedule activities for steady effort and continuous progress and evaluation without delaying

development activities
• schedule activities as early as possible
• increase process visibility (how do we know we’re on track?)

Updated by Stuart Anderson (c) 2007 Mauro Pezzè & Michal Young Ch 20, slide 2408/10/2024

Sample Schedule

08/10/2024 Updated by Stuart Anderson (c) 2007 Mauro Pezzè & Michal Young Ch 20, slide 25

Sample Schedule

08/10/2024 Updated by Stuart Anderson (c) 2007 Mauro Pezzè & Michal Young Ch 20, slide 26

Sample Schedule

08/10/2024 Updated by Stuart Anderson (c) 2007 Mauro Pezzè & Michal Young Ch 20, slide 27

Schedule Risk
• critical path = chain of activities that must be completed in

sequence and that have maximum overall duration
• Schedule critical tasks and tasks that depend on critical tasks as early

as possible to
• provide schedule slack
• prevent delay in starting critical tasks

• critical dependence = task on a critical path scheduled
immediately after some other task on the critical path
• May occur with tasks outside the quality plan

(part of the project plan)
• Reduce critical dependences by decomposing tasks on critical path,

factoring out subtasks that can be performed earlier

Updated by Stuart Anderson (c) 2007 Mauro Pezzè & Michal Young Ch 20, slide 2808/10/2024

Reducing the Impact of Critical Paths

08/10/2024 Updated by Stuart Anderson (c) 2007 Mauro Pezzè & Michal Young Ch 20, slide 29

Task name January Febrary March April May

CRITICAL SCHEDULE

Project start

Analysis and design

Code and integration

Design and execute
subsystem tests

Design and execute
system tests

Produce user
documentation

Product delivery

Reducing the Impact of Critical Paths

Updated by Stuart Anderson (c) 2007 Mauro Pezzè & Michal Young Ch 20, slide 30

Task name January Febrary March April May

UNLIMITED RESOURCES

Project start

Analysis and design

Code and integration

Design subsystem tests

Design system tests

Produce user
documentation

Execute subsystem
tests

Execute system tests

Product delivery

08/10/2024

Reducing the Impact of Critical Paths

Updated by Stuart Anderson (c) 2007 Mauro Pezzè & Michal Young Ch 20, slide 31

Task name January Febrary March April May

LIMITED RESOURCES

Project start

Analysis and design

Code and integration

Design subsystem tests

Design system tests

Produce user
documentation

Execute subsystem
tests

Execute system tests

Product delivery

08/10/2024

Risk Planning

• Risks cannot be eliminated, but they can be assessed, controlled, and
monitored
• Generic management risk

• Personnel (or more generally resource)
• Technology
• Schedule

• Quality risk
• Development
• Execution
• Requirements

Updated by Stuart Anderson (c) 2007 Mauro Pezzè & Michal Young Ch 20, slide 3208/10/2024

Personnell

Example Risks
• Loss of a staff member
• Staff member under-qualified for

task

Control Strategies
• cross training to avoid over-

dependence on individuals
• continuous education
• identification of skills gaps early in

project
• competitive compensation and

promotion policies and rewarding
work
• including training time in project

schedule

08/10/2024 Updated by Stuart Anderson (c) 2007 Mauro Pezzè & Michal Young Ch 20, slide 33

Technology

Example Risks
• High fault rate due to unfamiliar

COTS component interface
• Test and analysis automation tools

do not meet expectations

Control Strategies
• Anticipate and schedule extra time

for testing unfamiliar interfaces.
• Invest training time for COTS

components and for training with
new tools
• Monitor, document, and publicize

common errors and correct idioms.
• Introduce new tools in lower-risk

pilot projects or prototyping
exercises

08/10/2024 Updated by Stuart Anderson (c) 2007 Mauro Pezzè & Michal Young Ch 20, slide 34

Schedule

Example Risks
• Inadequate unit testing leads to

unanticipated expense and delays
in integration testing
• Difficulty of scheduling meetings

makes inspection a bottleneck in
development

Control Strategies
• Track and reward quality unit

testing as evidenced by low fault
densities in integration
• Set aside times in a weekly

schedule in which inspections take
precedence over other meetings
and work
• Try distributed and asynchronous

inspection techniques, with a lower
frequency of face-to-face
inspection meetings

08/10/2024 Updated by Stuart Anderson (c) 2007 Mauro Pezzè & Michal Young Ch 20, slide 35

Development

Example Risks
• Poor quality software delivered to

testing group
• Inadequate unit test and analysis

before committing to the code
base

Control Strategies
• Provide early warning and

feedback
• Schedule inspection of design,

code and test suites
• Connect development and

inspection to the reward system
• Increase training through

inspection
• Require coverage or other criteria

at unit test level

08/10/2024 Updated by Stuart Anderson (c) 2007 Mauro Pezzè & Michal Young Ch 20, slide 36

Test Execution

Example Risks
• Execution costs higher than

planned
• Scarce resources available for

testing

Control Strategies
• Minimize parts that require full

system to be executed
• Inspect architecture to assess

and improve testability
• Increase intermediate feedback
• Invest in scaffolding

08/10/2024 Updated by Stuart Anderson (c) 2007 Mauro Pezzè & Michal Young Ch 20, slide 37

Requirements

Example Risk
• High assurance critical

requirements increase expense
and uncertainty

Control Strategies
• Compare planned testing effort

with former projects with similar
criticality level to avoid
underestimating testing effort
• Balance test and analysis
• Isolate critical parts, concerns

and properties

08/10/2024 Updated by Stuart Anderson (c) 2007 Mauro Pezzè & Michal Young Ch 20, slide 38

Contingency Plan

• Part of the initial plan
• What could go wrong? How will we know, and how will we recover?

• Evolves with the plan
• Derives from risk analysis

• Essential to consider risks explicitly and in detail

• Defines actions in response to bad news
• Plan B at the ready (the sooner, the better)

08/10/2024 Updated by Stuart Anderson (c) 2007 Mauro Pezzè & Michal Young Ch 20, slide 39

Evolution of the Plan

08/10/2024 Updated by Stuart Anderson (c) 2007 Mauro Pezzè & Michal Young Ch 20, slide 40

Preliminary
plan

First
release

Second
release

Emergenc
y plan

Final
plan…

Process Monitoring

• Identify deviations from the quality plan as early as possible and take
corrective action
• Depends on a plan that is

• realistic
• well organized
• sufficiently detailed with clear, unambiguous milestones and criteria

• A process is visible to the extent that it can be effectively monitored

08/10/2024 Updated by Stuart Anderson (c) 2007 Mauro Pezzè & Michal Young Ch 20, slide 41

Evaluate Aggregated Data by Analogy

08/10/2024 Updated by Stuart Anderson (c) 2007 Mauro Pezzè & Michal Young Ch 20, slide 42

Process Improvement
Monitoring and improvement within a project or across multiple projects:
• Orthogonal Defect Classification (ODC)
• Root Cause Analysis (RCA)

08/10/2024 Updated by Stuart Anderson (c) 2007 Mauro Pezzè & Michal Young Ch 20, slide 43

Orthogonal Defect Classification (ODC)

• Accurate classification schema
• for very large projects
• to distill an unmanageable amount of detailed information

• Two main steps
• Fault classification

• when faults are detected
• when faults are fixed

• Fault analysis

08/10/2024 Updated by Stuart Anderson (c) 2007 Mauro Pezzè & Michal Young Ch 20, slide 44

ODC Fault Classification

•When faults are detected
• activity executed when the fault is revealed
• trigger that exposed the fault
• impact of the fault on the customer

•When faults are fixed
• Target: entity fixed to remove the fault
• Type: type of the fault
• Source: origin of the faulty modules (in-house, library, imported,

outsourced)
• Age of the faulty element (new, old, rewritten, re-fixed code)

Updated by Stuart Anderson (c) 2007 Mauro Pezzè & Michal Young Ch 20, slide 4508/10/2024

ODC activities and triggers

Review and Code Inspection
• Design Conformance:
• Logic/Flow
• Backward Compatibility
• Internal Document
• Lateral Compatibility
• Concurrency
• Language Dependency
• Side Effects
• Rare Situation

Structural (White Box) Test
• Simple Path
• Complex Path

Functional (Black box) Test
• Coverage
• Variation
• Sequencing
• Interaction

System Test
• Workload/Stress
• Recovery/Exception
• Startup/Restart
• Hardware Configuration
• Software Configuration
• Blocked Test

08/10/2024 Updated by Stuart Anderson (c) 2007 Mauro Pezzè & Michal Young Ch 20, slide 46

ODC impact

• Installability
• Integrity/Security
• Performance
• Maintenance
• Serviceability
• Migration
• Documentation

• Usability
• Standards
• Reliability
• Accessibility
• Capability
• Requirements

08/10/2024 Updated by Stuart Anderson (c) 2007 Mauro Pezzè & Michal Young Ch 20, slide 47

ODC Fault Analysis (example 1/4)

• Distribution of fault types versus activities
• Different quality activities target different classes of faults
• Example:

• algorithmic faults are targeted primarily by unit testing.
• Expect a high proportion of faults detected by unit testing should belong to this class

• IF proportion of algorithmic faults found during unit testing is:
• unusually small OR larger than normal found at integration test
• THEN unit tests may not have been well designed

• IF proportion of algorithmic faults found during integration testing
unusually large
• THEN integration testing may not focus strongly enough on interface faults

08/10/2024 Updated by Stuart Anderson (c) 2007 Mauro Pezzè & Michal Young Ch 20, slide 48

ODC Fault Analysis (example 2/4)

• Distribution of triggers over time during field test
• Faults corresponding to simple usage should arise early during field test,

while faults corresponding to complex usage should arise late.
• The rate of disclosure of new faults should asymptotically decrease
• Unexpected distributions of triggers over time may indicate poor system or

acceptance test
• IF triggers that correspond to simple usage reveal many faults late in acceptance testing

THEN sample may not be representative of the user population
• IF continuously growing faults during acceptance test is observed THEN system testing

may have failed

08/10/2024 Updated by Stuart Anderson (c) 2007 Mauro Pezzè & Michal Young Ch 20, slide 49

ODC Fault Analysis (example 3/4)

• Age distribution over target code
• Most faults should be located in new and rewritten code
• The proportion of faults in new and rewritten code with respect to base and

re-fixed code should gradually increase

• Different age distributions
• may indicate holes in the fault tracking and removal process
• may indicate inadequate test and analysis that failed in revealing faults early
• Example

• increase of faults located in base code after porting may indicate inadequate tests for
portability

08/10/2024 Updated by Stuart Anderson (c) 2007 Mauro Pezzè & Michal Young Ch 20, slide 50

ODC Fault Analysis (example 4/4)

• Distribution of fault classes over time
• The proportion of missing code faults should gradually

decrease (because the code is being provided)
• The percentage of extraneous faults may slowly increase,

because missing functionality should be revealed with use and
repaired.
• Examples:

• An increasing number of missing faults may be a symptom of instability of the
product.

• A sudden sharp increase in extraneous faults may indicate maintenance
problems

08/10/2024 Updated by Stuart Anderson (c) 2007 Mauro Pezzè & Michal Young Ch 20, slide 51

Improving the Process

• Many classes of faults that occur frequently are rooted in process and
development flaws
• examples

• Shallow architectural design that does not take into account resource allocation can lead to
resource allocation faults

• Lack of experience with the development environment, which leads to misunderstandings
between analysts and programmers on rare and exceptional cases, can result in faults in
exception handling.

• The occurrence of many such faults can be reduced by modifying the
process and environment
• examples

• Resource allocation faults resulting from shallow architectural design can be reduced by
introducing specific inspection tasks

• Faults attributable to inexperience with the development environment can be reduced with
focused training

08/10/2024 Updated by Stuart Anderson (c) 2007 Mauro Pezzè & Michal Young Ch 20, slide 52

Improving Current and Next Processes

• Identifying weak aspects of a process can be difficult
• Analysis of the fault history can help software engineers

build a feedback mechanism to track relevant faults to their
root causes
• Sometimes information can be fed back directly into the current

product development
• More often it helps software engineers improve the development

of future products

Updated by Stuart Anderson (c) 2007 Mauro Pezzè & Michal Young Ch 20, slide 5308/10/2024

Root cause analysis (RCA)

• Technique for identifying and eliminating process faults
• First developed in the nuclear power industry; used in many

fields.
• Four main steps
•What are the faults?
•When did faults occur? When, and when were they found?
•Why did faults occur?
• How could faults be prevented?

Updated by Stuart Anderson (c) 2007 Mauro Pezzè & Michal Young Ch 20, slide 5408/10/2024

What are the faults?

• Identify a class of important faults
• Faults are categorized by
• severity = impact of the fault on the product
• Kind

• No fixed set of categories; Categories evolve and adapt
• Goal:

• Identify the few most important classes of faults and remove their causes
• Differs from ODC: Not trying to compare trends for different classes of faults, but

rather focusing on a few important classes

Updated by Stuart Anderson (c) 2007 Mauro Pezzè & Michal Young Ch 20, slide 5508/10/2024

Fault Severity
Level Description Example

Critical The product is unusable The fault causes the program to crash

Severe Some product features
cannot be used, and there
is no workaround

The fault inhibits importing files
saved with a previous version of the
program, and there is no workaround

Moderate Some product features
require workarounds to
use, and reduce
efficiency, reliability, or
convenience and usability

The fault inhibits exporting in
Postscript format.
Postscript can be produced using the
printing facility, but with loss of
usability and efficiency

Cosmetic Minor inconvenience The fault limits the choice of colors
for customizing the graphical
interface, violating the specification
but causing only minor inconvenience

Updated by Stuart Anderson (c) 2007 Mauro Pezzè & Michal Young Ch 20, slide 56

Pareto Distribution (80/20)

• Pareto rule (80/20)
• in many populations, a few (20%) are vital and many (80%) are

trivial
• Fault analysis
• 20% of the code is responsible for 80% of the faults

• Faults tend to accumulate in a few modules
• identifying potentially faulty modules can improve the cost effectiveness of fault

detection
• Some classes of faults predominate

• removing the causes of a predominant class of faults can have a major impact on the
quality of the process and of the resulting product

Updated by Stuart Anderson (c) 2007 Mauro Pezzè & Michal Young Ch 20, slide 5708/10/2024

Why did faults occur?

• Core RCA step
• trace representative faults back to causes
• objective of identifying a “root” cause

• Iterative analysis
• explain the error that led to the fault
• explain the cause of that error
• explain the cause of that cause
• ...

• Rule of thumb
• “ask why six times”

Updated by Stuart Anderson (c) 2007 Mauro Pezzè & Michal Young Ch 20, slide 5808/10/2024

Example of fault tracing

• Tracing the causes of faults requires experience, judgment, and knowledge of the
development process

• example
• most significant class of faults = memory leaks
• cause = forgetting to release memory in exception handlers
• cause = lack of information: “Programmers can't easily determine what needs to be cleaned

up in exception handlers”
• cause = design error: “The resource management scheme assumes normal flow of control”
• root problem = early design problem: “Exceptional conditions were an afterthought dealt

with late in design”

Updated by Stuart Anderson (c) 2007 Mauro Pezzè & Michal Young Ch 20, slide 5908/10/2024

How could faults be prevented?

• Many approaches depending on fault and process:
• From lightweight process changes

• example
• adding consideration of exceptional conditions to a design inspection checklist

• To heavyweight changes:
• example

• making explicit consideration of exceptional conditions a part of all requirements
analysis and design steps

• Goal is not perfection, but cost-effective improvement (excellence is
the enemy of the good)

08/10/2024 Updated by Stuart Anderson (c) 2007 Mauro Pezzè & Michal Young Ch 20, slide 60

The Quality Team

• The quality plan must assign roles and responsibilities to
people
• assignment of responsibility occurs at
• strategic level

• test and analysis strategy
• structure of the organization
• external requirements (e.g., certification agency)

• tactical level
• test and analysis plan

08/10/2024 Updated by Stuart Anderson (c) 2007 Mauro Pezzè & Michal Young Ch 20, slide 61

Roles and Responsibilities
at Tactical Level
• balance level of effort across time
• manage personal interactions
• ensure sufficient accountability that quality tasks are not easily

overlooked
• encourage objective judgment of quality
• prevent it from being subverted by schedule pressure
• foster shared commitment to quality among all team members
• develop and communicate shared knowledge and values regarding

quality

08/10/2024 Updated by Stuart Anderson (c) 2007 Mauro Pezzè & Michal Young Ch 20, slide 62

Alternatives in Team Structure

• Conflicting pressures on choice of structure
• example

• autonomy to ensure objective assessment
• cooperation to meet overall project objectives

• Different structures of roles and responsibilities
• same individuals play roles of developer and tester
• most testing responsibility assigned to a distinct group
• some responsibility assigned to a distinct organization

• Distinguish
• oversight and accountability for approving a task
• responsibility for actually performing a task

08/10/2024 Updated by Stuart Anderson (c) 2007 Mauro Pezzè & Michal Young Ch 20, slide 63

Roles and responsibilities pros and cons

• Same individuals play roles of developer and tester
• potential conflict between roles

• example
• a developer responsible for delivering a unit on schedule
• responsible for integration testing that could reveal faults that delay delivery

• requires countermeasures to control risks from conflict

• Roles assigned to different individuals
• Potential conflict between individuals

• example
• developer and a tester who do not share motivation to deliver a quality product on schedule

• requires countermeasures to control risks from conflict

08/10/2024 Updated by Stuart Anderson (c) 2007 Mauro Pezzè & Michal Young Ch 20, slide 64

Independent Testing Team

• Minimize risks of conflict between roles played by the same individual
• Example

• project manager with schedule pressures cannot
• bypass quality activities or standards
• reallocate people from testing to development
• postpone quality activities until too late in the project

• Increases risk of conflict between goals of the independent quality team
and the developers
• Plan

• should include checks to ensure completion of quality activities
• Example

• developers perform module testing
• independent quality team performs integration and system testing
• quality team should check completeness of module tests

08/10/2024 Updated by Stuart Anderson (c) 2007 Mauro Pezzè & Michal Young Ch 20, slide 65

Managing Communication

• Testing and development teams must share the goal of shipping a high-quality
product on schedule
• testing team

• must not be perceived as relieving developers from responsibility for quality
• should not be completely oblivious to schedule pressure

• Independent quality teams require a mature development process
• Test designers must

• work on sufficiently precise specifications
• execute tests in a controllable test environment

• Versions and configurations must be well defined
• Failures and faults must be suitably tracked and monitored across versions

Updated by Stuart Anderson (c) 2007 Mauro Pezzè & Michal Young Ch 20, slide 6608/10/2024

Testing within XP

• Full integration of quality activities with development
• Minimize communication and coordination overhead
• Developers take full responsibility for the quality of their work
• Technology and application expertise for quality tasks match expertise

available for development tasks

• Plan
• check that quality activities and objective assessment are not easily tossed

aside as deadlines loom
• example

• XP “test first” together with pair programming guard against some of the inherent risks
of mixing roles

08/10/2024 Updated by Stuart Anderson (c) 2007 Mauro Pezzè & Michal Young Ch 20, slide 67

Outsourcing Test and Analysis

• (Wrong) motivation
• testing is less technically demanding than development and can be carried out by

lower-paid and lower-skilled individuals
• Why wrong

• confuses test execution (straightforward) with analysis and test design (as
demanding as design and programming)

• A better motivation
• to maximize independence

• and possibly reduce cost as (only) a secondary effect

• The plan must define
• milestones and delivery for outsourced activities
• checks on the quality of delivery in both directions

08/10/2024 Updated by Stuart Anderson (c) 2007 Mauro Pezzè & Michal Young Ch 20, slide 68

Summary

• Planning is necessary to
• order, provision, and coordinate quality activities

• coordinate quality process with overall development
• includes allocation of roles and responsibilities

• provide unambiguous milestones for judging progress
• Process visibility is key

• ability to monitor quality and schedule at each step
• intermediate verification steps: because cost grows with time between error and repair

• monitor risks explicitly, with contingency plan ready
• Monitoring feeds process improvement

• of a single project, and across projects

08/10/2024 Updated by Stuart Anderson (c) 2007 Mauro Pezzè & Michal Young Ch 20, slide 69

