Automating Analysis and Test

Adapted Stuart Anderson (c) 2007 Mauro Pezzé & Michal

20/11/2025
Young

Ch 23, slide 1

Learning objectives

* Be able to explain the main purposes of automating software analysis
and testing

* |dentify activities that can be fully or partially automated
* Be able to use cost/benefit trade-offs to decide on automation

* Be able to separate publicity from important features in descriptions
of commercial A&T tools

Potential Roles of Automation

* Necessary for introducing a task
* example: coverage tools enable measuring structural coverage of test suites

e Useful to reduce cost
* example: capture and replay tools reduce the costs of reexecuting test suites

e Useful to increase (human) productivity

* example: software inspection is a manual activity, but tools to organize and
present information and manage communication increase the productivity of

people
* Essential to automate CD/CI activities

Approaching Automation

* Prioritize automation steps based on
* variations in impact, maturity, cost, scope of the technology
 fit and impact on the organization and process

* Three (non-orthogonal) dimensions for automation
* value and current cost of the activity
» extent to which the activity requires or is made less expensive by automation
e cost of obtaining or constructing tool support

Automation Costs Vary Enormously

* Some tools are so simple to develop that they are justifiable even if
their benefits are modest
* example: generate test cases from finite state machine models

* Some tools that would be enormously valuable are simply impossible

« example: identify exactly which parts of a program can never be executed (a
provably undecidable problem)

Costs May Depend on Scope

* Sometimes a general-purpose tool is only marginally more difficult to
produce than a tool specialized for one project

* example: general capture and replay for Windows applications vs capture and
replay for a specific Windows application

* Investment in the general-purpose tool, whether to build it or to buy it, can
be amortized across projects

* In other cases, simple, project-specific tools may be more cost
effective

* Tool construction is often a good investment in a large project
e example: simulators to permit independent subsystem testing

Focusing Where Automation Pays

* Simple repetitive tasks are often straightforward to automate
* humans are slow and make errors in repetitive tasks

* But ...judgment and creative problem solving remain outside the
domain of automation
* Example: Humans are
* Very good at identifying relevant execution scenarios that correspond to test
case specifications

* Very inefficient at generating large volumes of test cases or identifying
erroneous results within a large set of outputs from regression tests

* Automating the repetitive portions of the task reduces costs, and
improves accuracy as well

Planning: The Strategy Level

* Prescribes tools for key elements of the quality process
* Caninclude detailed process and tool prescriptions

 Recommends different tools contingent on aspects of a project
* (application domain, development languages, size, overall quality,...)

* Often included in the A&T strategy: tools for
* Organizing test design and execution
* Generating quality documents
* Collecting metrics
* Managing regression test suites

 Less often included: tools for
* Generating test cases
* Dynamic analysis

Planning: The Project Level

e The A&T Plan Indicates

* Tools inherited from the strategy

* Additional tools selected for that project
For new or customized tools, the A&T plan must include

* Costs (including training)
* Implied activities
e Potential risks

* The plan positions tools within the development process and the analysis
and test methodology

e Avoid waste of cost and effort from lack of contextualization of the tools

* Example: tools for measuring code coverage
e simple and inexpensive
» (if not properly contextualized) an annoyance, producing data not put to productive use

Process Support:
Planning & Monitoring

Automation in Process Management

* Managing a process involves ...
» planning a set of activities with appropriate cost and quality trade-offs
* monitoring progress to identify risks as early as possible
 avoiding delays by adjusting the plan as needed

... and requires ...
* human creativity and insight for which no tool can substitute

* Tools can support process management and improve decision making by
e organizing and monitoring activities and results
* facilitating group interaction
* managing quality documents
* tracking costs

Classic Planning Tools

Facilitate task scheduling, resource allocation, and cost estimation by
arranging tasks according to resource and time constraints

Can be specialized to A&T management with features for deriving relations
among tasks, launching tasks, and monitoring completion of activities

Examples: tools to
* recognize delivery of a given artifact
» schedule execution of a corresponding test suite
* notify test designer of test results
* record the actual execution time of the activity
* signal schedule deviations to the quality manager

Most useful when integrated in the analysis and test environment

Version and Configuration Control Tools

* Analysis and testing involve complex relations among a large number
of artifacts

* Version and configuration management tools

* relate versions of software artifacts

 trigger consistency checks and other activities

» support analysis and testing activities like they control assembly and

compilation of related modules
* example: trigger execution of the appropriate test suites for each software modification

* Improve efficiency in well-organized processes

* not a substitute for organization

Monitoring

* Integrated quality tracking
* improves efficiency in a well-structured process,
» does not by itself bring order out of chaos

* Progress must be monitored in terms of
e schedule (actual effort and completion times vs plan)
* level of quality

e Quality of the final product
e cannot be directly measured before its completion

* but we can derive useful indications
* example: orthogonal defect classification [see chapter 20]

Quality Tacking

* Essential function: recognize deviations from expectation as early as possible to
reduce consequences
* Proxy measures
* must be computed early
* must be interpreted in a way that avoids misleading conclusions or distorted incentives

* Example: lines of code

» useful as a simple proxy for productivity

* must be carefully interpreted to avoid creating both an incentive for verbosity and a disincentive for
effective reuse

* Example: number of faults detected

* useful to detect deviations from the norm
* one should be as concerned about the causes of abnormally low numbers as high

e Collection, summary, and presentation of data can be automated
* Design and interpretation cannot be automated

Managing People

* People may work
* in different groups
* in different companies
 distributed across time zones and continents

* A large proportion of a software engineer's time is devoted to
communication

* We need to
* facilitate effective communication
* limit disruptions and distractions of unmanaged communication

Managing Communication

* Simple general-purpose tools (e-mail, chat, forum, ...)
* balance synchronous with asynchronous communication

* examples

* When excessive interruptions slow progress, we may replace synchronous with asynchronous
communication

* Conversely, when communication is splintered into many small exchanges punctuated by
waits for reply, we may replace asynchronous with synchronous communication

 Communication is most effective when all parties have immediate access
to relevant information
» Task-specific tools can improve on general-purpose support

* Example: tools for distributed software inspections

* Extend chat interfaces or forum with
* Managed presentation of the artifact to be inspected
* Appropriate portions of checklists and automated analysis results

Measurement

Adapted Stuart Anderson (c) 2007 Mauro Pezzé & Michal

20/11/2025 Young

Ch 23, slide 18

Metrics

* Measuring progress & results is necessary for managing processes
* ... but often we cannot measure what we really care about

* e.g., actual progress toward goals or effort remaining; projected reliability; ...

* Metrics are proxy measures (rough guides) based on what we can
measure

* Anything that is correlated with the real measure of interest under typical
conditions

* Usually require calibration to local conditions

Static Metrics: Size

e Static metrics measure some software properties, often to estimate
other properties (i.e., as proxies for things we can’t measure)

* Size is the most basic property

» strongly correlated with schedule and cost

» several possible variations, depending on white space, comments,
programming style

* Course measures include counts of modules or interfaces
* functions, methods, formal parameters, etc

* Many more complex measures ...

* but lines of code is about as good (or bad) as complex measures for judging
effort

Measuring Complexity

* Intuitive rationale: If we could measure how complicated a program
or its parts were, we could ...
* Focus test & analysis on most error-prone parts of a system
* Make better plans and schedules
* Consider redesign of excessively complex subsystems

* But we can’t measure true (logical) complexity directly.
e Control flow complexity is a proxy.

Cyclomatic complexity

 Among attempts to measure complexity, only cyclomatic complexity is still
commonly collected

cyclomatic complexity V(g)

number of independent paths through the control flow graph

e-n+2

(edges - nodes + 2)

Cyclomatic metrics and complexity

CFG1 CFG2 CFG3

:

V(g)=1-2+2=1

V(g)=5-6+2=1 V(g)=8-6+2=4

Adapted Stuart Anderson (c) 2007 Mauro Pezzé & Michal

20/11/2025
Young

Ch 23, slide 23

Interpreting Cyclomatic Complexity

V(g) < 20
* Low to moderate cyclomatic complexity
e simple program
V(g) > 20
* high cyclomatic complexity
* complex programs
V(g) > 50
* very high cyclomatic complexity
e programs very difficult or impossible to thoroughly test

Cyclomatic vs logical complexity
* sign of complex control flow structure
* does not capture other aspects of logical complexity that can lead to difficulty in testing

Metrics & Quality Standards

* Quality standards
* May be prescribed (e.g., by contract)
* May be adopted voluntarily as guidance
A quality standard like ISO/IEC 9126 requires measurement of user-
perceived quality
* but doesn’t say how to measure it
* To implement ... We must find objective indicators (metrics) for each
required quality

ISO/IEC 9126 Metrics (level 1)

Functionality Ability to meet explicit and implicit functional
requirements

Reliability Ability to provide the required level of service
when the software is used under appropriate
conditions

Usability Ease of understanding, teaching, and using

Efficiency Ability to guarantee required performance

under given conditions
Maintainability Ability to be updated, corrected, and modified

Portability Ability to be executed in different environments
and interoperate with other software

Broad qualities require refinement and mapping to objectively
measurable properties

Adapted Stuart Anderson (c) 2007 Mauro Pezzé & Michal

20/11/2025 Young

Ch 23, slide 26

Automating Program Analysis,
Test Case Generation, and Test
Execution

Test Case Generation and Execution

* Automation is important because
* It is large fraction of overall test and analysis costs
e can become a scheduling bottleneck near product delivery deadlines

* Designing a test suite
* involves human creativity

* Instantiating and executing test cases
* is a repetitive and tedious task

e can be largely automated to

* reduce costs
* accelerate the test cycle

Automated Testing - Stages

* Push the creative work as far forward as possible
* E.g., designing functional test suites is part of the specification process

* At each level, from systems requirements through architectural interfaces and
detailed module interfaces

* Construct scaffolding with the product

* Automate instantiation and execution
* So they are not a bottleneck
e So they can be repeated many times

Static Analysis and Proof

* Effective for
* Quick and cheap checks of simple properties
* Example: simple data flow analyses can identify anomalous patterns
* Expensive checks necessary for critical properties
* Example: finite state verification tool to find synchronization faults

Design for Verification

* Decompose Verification Problems

* Design: enforce design rules to accommodate analysis
* example: encapsulate safety-critical properties into a safety kernel
 Verification: focus on encapsulated or simplified property

e example:
» prove safety properties of the (small) kernel
* check (cheaply, automatically) that all safety-related actions are mediated by the kernel

Undecidability and Automated Analysis

* Some tools report false alarms in addition to real violations of the properties they check
e example: data flow analyzers

* Some tools avoid false alarms but may also fail to detect all violations
* example: bug finders

* Some tools are heavyweight with respect to requirement for skilled human interaction
and guidance to provide strong assurance of important general properties

* examples

* Finite state verification systems (model checkers)
 can verify conformance between a model of a system and a specified property
* require construction of the model and careful statement of the property

* Theorem provers
* execute with interactive guidance

* requires specialists with a strong mathematical background to formulate the problem and the property
interactively select proof strategies

Complex analysis tools

* Verifiers based on theorem proving
 verify a wide class of properties
* require extensive human interaction and guidance

e Finite state verification tools
e restricted focus
» execute completely automatically

* almost always require several rounds of revision to properly formalize a
model and property to be checked

Simple analysis tools

Restricted to checking a fixed set of simple properties
* do not require any additional effort for specification

Type checkers
* typically applied to properties that are syntactic = enforce a simple well-formedness rule
* violations are easy to diagnose and repair
e Often rules are stricter than one would like

Data flow analyzers
* sensitive to program control and data flow
» often used to identify anomalies rather than simple, unambiguous faults

Checkers of domain specific properties
* Web site link checkers

Cognitive Aids

Supporting creative, human processes

Cognitive Aids: Problems to Address

* Nonlocality
* Information that requires a shift of attention
* Example: following a reference in one file or page to a definition on another
» creates opportunities for human error

* Information clutter
* Information obscured by a mass of distracting irrelevant detail

Cognitive Aids: Approaches

* Nonlocality and clutter

* increase the cognitive burden of inspecting complex artifacts (requirements
statements, program code, test logs,...)

» decrease effectiveness and efficiency

* Can be reduced by automatically focusing and abstracting from
irrelevant detail

* Browsing and visualization aids

* Often embedded in other tools and customized to support particular tasks
* Pretty-printing and program slicing
* Diagrammatic representations

Diagrammatic Representations
Example: Code Crawler

e 006 CodeCrawler - System Complexity View
CodeCravder Moose Apply Yiew Spawn Yiew Selection Transformation Colors Layout

DR BcETE MB ¥y QEQ B oK

Item Class Root::Smalltalk::CodeCravder:CodeCravder || NOA: 5| NOM: 74 | WLOC: 548 | - 0] = 0]

o DD”[]I]DDDD —
I |"||"|' ~, L

o G5 % P

Characteristics of classes in class
hierarchy summarized and
represented by color, width, and
height

76 Nodes, 61 Edges - 0 selected Nodes

Adapted Stuart Anderson (c) 2007 Mauro Pezzé & Michal

20/11/2025
Young

Ch 23, slide 38

More Modern Example: sourcetrail

[XON) Sourcetrail - tictactoe.srctriprj

(<] TicTacToe::Run x |(+

TicTacToe::Run

Field 3

@ pusLic
Show
SameInRow

TicTacToe 5
MakeMove

@ pusLic

main

Player &4

A PRIVATE @ pusuic
players_ > Turn
field_ getToken

getName
P stringlut

3 references

v [N tictactoe.cpp 1 reference (]

return true;

}
35 void TicTacToe:: () {
36 field_.Show();
37
38 int playerIndex = 0;
39
40 for (int i =05 i < 95 i++) {
41 Player& player = *players_[playerIndex];
42
43 field_.MakeMove(player.Turn(field_), player.getToken());
44 field_.Show();
45
46 if (field_.SameInRow(player.getToken(), 3)) {
a7 i player.getiane());
48 " won!\n\n");
49 return;
50 }
51
52 playerIndex = (playerIndex + 1) % 2;
53 }
54
55 i0::stringOut("Game ends in draw!\n\n");
56 }
void TicTacToe set() {

field_.Clear();

v [M tictactoe.h 1reference o

~TicTacToe();

bool Start();
13 void (O

private:

Activate "TicTacToe::Run": 1 result with 4 references in 3 files

20/11/2025

Connected to SublimeText

Adapted Stuart Anderson (c) 2007 Mauro Pezzé & Michal

Ch 23, slide 39

Related Tools: Versi

control, Debuggir

on

Version Control

* Record versions and releases of each part of an evolving software
system

* From very simple version management (CVS, SVN) to very complex
configuration management systems

e Useful for maintaining test artifacts (plans, test cases, logs, etc.)
» Test artifacts are versioned with the product

* Integrate with process support

* E.g., it is possible to trigger re-testing on changes, or require successful test
before committing to baseline

* Provide historical information for tracing faults across versions and
collecting data for improving the process

Debugging # Testing

» Testing = detecting the presence of software faults
* Debugging = locating, diagnosing, and repairing faults

* Responsibility for testing and debugging typically fall to different
individuals

* Debugging starts with a set of test cases

* A small, simple test case that invariably fails is far more valuable in debugging
than a complex scenario, particularly one that may fail or succeed depending
on unspecified conditions

* larger suites of single-purpose test cases are better than a small number of
comprehensive test cases

Run-time Debugging Tools

e All modern deguggers ...
* Allow inspection of program state
* Pause execution
* at selected points (breakpoints)
* when certain conditions occur (watchpoints)
» after a fixed number of execution steps
* Provide display and control at the level of program source code

* Specialized debugging support may include
* Visualization (e.g., for performance debugging)
* Animation of data structures

* Differential debugging compares a set of failing executions to other executions that do not
fail

The Ecosystem has developed from Y&P

* The emergence of DevOps has seen the emergence of a wide variety
of tools

» Testing has developed somewhat but the basic techniques are still in

line with Y&P but are more automated via platforms that orchestrate
a wide range of tools

* The following slide give some indication of the array of tools in use in
typical DevOps environments

archiva 16 @

TeamTity

{3Bamboo

docker

TRICENTIS

ii}+ableuu-© B
Qlik@ ®iehoola Kbana

Power BI

g1 P K:zkanore(|
Tools =, JUnit Meter <77 ,‘.,.
; Se Qunit cucumber C,_
Ecosystem ", Ll EBOUNIT G o rtects ‘ s

'l'cslf‘lfn- 1 ®appium

@ms \‘,‘ 5§ _ Hredgate

/’C-J\\pteligent s LIQUINBASE

) \ D A TenE A L L DBmsestio
Ztealeaf \ Q)] -~)
| @ FLURRY A appcelerator ~ —---‘, _ IEM omdmo<|
\ IB{'{ ~“BlazeMeter I
APPDYNAMICS ! 's LoodComplete /
zABBIX] o g L &3 oadStom’
e Hewlett Pockard appvanceutp
Y I’lm — ,4'
Erverprse " HPARASOFT mm:A . /
Odynatrace SCAS A’,/
splunk > /,
/

20/11/2025 Ch 23, slide 45

Image Source: https://www.blazemeter.com/blog/ultimate-devops-tools-ecosystem-tutorial-part-1

DevOps Including Machine Learning

Self-Healing DevOps

Commit

Failure
Detected

l Yes
Scan & Test

To GIT

Approval
Gate

Yes

20/11/2025

Image source: https://dzone.com/articles/ai-powered-devops-self-healing-pipelines
Young

Adapted Stuart Anderson (c) 2007 Mauro Pezzé & Michal

Ch 23, slide 46

Automation Strategy

(summary)

Choosing and Integrating tools

* Tools and approaches must fit ...
* development organization, process, and application domain

» Simple rule: Identify significant costs (money or schedule) for automation
* Example: automated module testing
» of little use for organizations using the Cleanroom process
» essential for organizations using XP

* Example:

» organizations building safety-critical software can justify investment in sophisticated tools for
verifying the properties of specifications and design organization that builds rapidly evolving mass
market applications is more likely to benefit from good support for automated regression testing

* Also consider activities that require automation
* Missed by analysis of current testing & analysis costs

Think Strategically

* Evaluate investments in automation beyond a single project and
beyond the quality team

e Reusing common tools across projects reduces
» cost of acquiring and installing tools
 cost of learning to use them effectively
* impact on project schedule

* Think globally

* Often quality tools have costs and benefits for other parts of the software
organization

Summary

 Automation

Can improve the efficiency of some quality activities
Is a necessity for implementing others
Is never a substitute for a rational, well-organized quality process

Can incrementally improve processes that makes the best use of human
resources

Must be carefully evaluated to balance costs and benefits

Continuous Integration and Deployment depend on good automation to
underpin quality processes

