
Automated Reasoning

Lecture 8: Isar – A Language for Structured
Proofs

Jacques Fleuriot
jdf@inf.ed.ac.uk

Acknowledgement: Tobias Nipkow kindly provided the slides for this lecture

jdf@inf.ed.ac.uk

Apply scripts

▶ unreadable
▶ hard to maintain
▶ do not scale

No structure!

Apply scripts versus Isar proofs

Apply script = assembly language program
Isar proof = structured program with comments

But: apply still useful for proof exploration

A typical Isar proof

proof
assume formula0
have formula1 by simp
...
have formulan by blast
show formulan+1 by . . .

qed

proves formula0 =⇒ formulan+1

Isar core syntax

proof = proof [method] step∗ qed
| by method

method = (simp . . .) | (blast . . .) | (induction . . .) | (rule . . .) | …

step = fix variables (
∧

)
| assume prop (=⇒)
| [from fact+] (have | show) prop proof

prop = [name:] ”formula”

fact = name | …

Example: Cantor’s theorem

Informally: The power set of a set is always larger than the set it originated
from.

Figure from https://ianwrightsite.files.wordpress.com/2018/10/infinityhandout.pdf

https://ianwrightsite.files.wordpress.com/2018/10/infinityhandout.pdf

Example: Cantor’s theorem

Informally: The power set of a set is always larger than the set it originated
from.
lemma ¬ surj(f :: ’a⇒ ’a set)
proof default proof: assume surj, show False
assume a: surj f
from a have b: ∀ A. ∃ a. A = f a
by(simp add: surj_def)

from b have c: ∃ a. {x. x /∈ f x} = f a
by blast

from c show False
by blast

qed

Abbreviations

this = the previous proposition proved or assumed
then = from this
thus = then show

hence = then have

using and with

(have|show) prop using facts
=

from facts (have|show) prop

with facts
=

from facts this

Structured lemma statement

lemma
fixes f :: “’a⇒ ’a set”
assumes s: “surj f”
shows “False”

proof - no automatic proof step
have “∃ a. {x. x /∈ f x} = f a” using s
by(auto simp: surj_def)

thus “False” by blast
qed

Proves surj f =⇒ False
but surj f becomes local fact s in proof.

The essence of structured proofs

Assumptions and intermediate facts
can be named and referred to explicitly and selectively

Structured lemma statements

fixes x :: τ1 and y :: τ2 …
assumes a: P and b: Q …
shows R

▶ fixes and assumes sections optional
▶ shows optional if no fixes and assumes

Proof patterns: Case distinction

show “R”
proof cases
assume “P”
...
show “R” . . .

next
assume “¬ P”
...
show “R” . . .

qed

have “P ∨ Q” . . .
then show “R”
proof
assume “P”
...
show “R” . . .

next
assume “Q”
...
show “R” . . .

qed

Proof patterns: Contradiction

show “¬ P”
proof
assume “P”
...
show “False” . . .

qed

show “P”
proof (rule ccontr)
assume “¬P”
...
show “False” . . .

qed

Proof patterns: ←→

show “P ←→ Q”
proof
assume “P”
...
show “Q” . . .

next
assume “Q”
...
show “P” . . .

qed

Proof patterns: ∀ and ∃ introduction

show “∀ x. P(x)”
proof
fix x local fixed variable
show “P(x)” . . .

qed

show “∃ x. P(x)”
proof
...
show “P(witness)” . . .

qed

Proof patterns: ∃ elimination: obtain

have ∃ x. P(x)
then obtain x where p: P(x) by blast
... x fixed local variable

Works for one or more x

obtain example

lemma ¬ surj(f :: ’a⇒ ’a set)
proof
assume surj f
hence ∃ a. {x. x /∈ f x} = f a by(auto simp: surj_def)
then obtain a where {x. x /∈ f x} = f a by blast
hence a /∈ f a←→ a ∈ f a by blast
thus False by blast

qed

Proof patterns: Set equality and subset

show “A = B”
proof
show “A ⊆ B” . . .

next
show “B ⊆ A” . . .

qed

show “A ⊆ B”
proof
fix x
assume “x ∈ A”
...
show “x ∈ B” . . .

qed

Example: pattern matching

show formula1 ←→ formula2 (is ?L←→ ?R)
proof

assume ?L
...
show ?R …

next
assume ?R
...
show ?L …

qed

?thesis

show formula (is ?thesis)
proof -

...
show ?thesis …

qed

Every show implicitly defines ?thesis

let

Introducing local abbreviations in proofs:
let ?t = "some-big-term"
...
have "…?t …"

Quoting facts by value

By name:
have x0: ”x > 0” …
...
from x0 …

By value:
have ”x > 0” …
...
from ‘x>0‘ …

↑ ↑
back quotes

Example

lemma
“(∃ ys zs. xs = ys @ zs ∧ length ys = length zs) ∨
(∃ ys zs. xs = ys @ zs ∧ length ys = length zs + 1)”

proof ???

When automation fails

Split proof up into smaller steps.

Or explore by apply:

have … using …
apply - to make incoming facts

part of proof state. Note the “-”
apply auto or whatever
apply …

At the end:
▶ done
▶ Better: convert to structured proof

moreover—ultimately

have “P1” . . .
moreover
have “P2” . . .
moreover
...
moreover
have “Pn” . . .
ultimately
have “P” . . .

≈

have lab1: “P1” . . .
have lab2: “P2” . . .
...
have labn: “Pn” . . .
from lab1 lab2 . . .
have “P” . . .

With names

Raw proof blocks

{ fix x1 . . . xn
assume A1 . . . Am...
have B

}
proves [[A1; . . . ; Am]] =⇒ B
where all x i have been replaced by ?xi.

Proof state and Isar text

In general: proof method
Applies method and generates subgoal(s):∧

x1 . . . xn [[A1; . . . ; Am]] =⇒ B

How to prove each subgoal:
fix x1 . . . xn
assume A1 . . . Am...
show B

Separated by next

Summary

▶ Introduction to Isar and to some common proof patterns e.g.
case distinction, contradiction, etc.

▶ Structured proofs are becoming the norm for Isabelle as they
are more readable and easier to maintain.

▶ Mastering structured proof takes practice and it is usually
better to have a clear proof plan beforehand.

▶ Useful resource: Isar quick reference manual (see AR web
page).

▶ Reading: N&K (Concrete Semantics), Chapter 5.

	Isar by example
	Proof patterns
	Streamlining Proofs
	Pattern Matching and Quotations
	Top down proof development
	moreover
	Raw proof blocks

