
Automated Reasoning

Lecture 7: Locales in Isabelle/HOL

Jacques Fleuriot
jdf@inf.ed.ac.uk

jdf@inf.ed.ac.uk


Axiomatic Extensions Considered Harmful

As we saw already, definitional extension is favoured over
axiomatic extension in Isabelle/HOL.

▶ Axiomatization can introduce an inconsistency.
▶ Example: After declaring the existence of a new type SET in

Isabelle, it is possible to add a new axiom:

axiomatization
Member :: SET⇒ SET⇒ bool

where
comprehension : ∃y.∀x. Member x y←→ P x

which enables a "proof" of the paradoxical lemma:
lemma member_iff_not_member : ∃y. Member y y←→ ¬Member y y

from which False can be derived.
▶ Yet, axiomatic reasoning is part of mathematics. We want to be

able to carry it out safely in Isabelle.



Axiomatic Extensions Considered Harmful

As we saw already, definitional extension is favoured over
axiomatic extension in Isabelle/HOL.
▶ Axiomatization can introduce an inconsistency.

▶ Example: After declaring the existence of a new type SET in
Isabelle, it is possible to add a new axiom:

axiomatization
Member :: SET⇒ SET⇒ bool

where
comprehension : ∃y.∀x. Member x y←→ P x

which enables a "proof" of the paradoxical lemma:
lemma member_iff_not_member : ∃y. Member y y←→ ¬Member y y

from which False can be derived.
▶ Yet, axiomatic reasoning is part of mathematics. We want to be

able to carry it out safely in Isabelle.



Axiomatic Extensions Considered Harmful

As we saw already, definitional extension is favoured over
axiomatic extension in Isabelle/HOL.
▶ Axiomatization can introduce an inconsistency.
▶ Example: After declaring the existence of a new type SET in

Isabelle, it is possible to add a new axiom:

axiomatization
Member :: SET⇒ SET⇒ bool

where
comprehension : ∃y.∀x. Member x y←→ P x

which enables a "proof" of the paradoxical lemma:
lemma member_iff_not_member : ∃y. Member y y←→ ¬Member y y

from which False can be derived.
▶ Yet, axiomatic reasoning is part of mathematics. We want to be

able to carry it out safely in Isabelle.



Axiomatic Extensions Considered Harmful

As we saw already, definitional extension is favoured over
axiomatic extension in Isabelle/HOL.
▶ Axiomatization can introduce an inconsistency.
▶ Example: After declaring the existence of a new type SET in

Isabelle, it is possible to add a new axiom:

axiomatization
Member :: SET⇒ SET⇒ bool

where
comprehension : ∃y.∀x. Member x y←→ P x

which enables a "proof" of the paradoxical lemma:
lemma member_iff_not_member : ∃y. Member y y←→ ¬Member y y

from which False can be derived.

▶ Yet, axiomatic reasoning is part of mathematics. We want to be
able to carry it out safely in Isabelle.



Axiomatic Extensions Considered Harmful

As we saw already, definitional extension is favoured over
axiomatic extension in Isabelle/HOL.
▶ Axiomatization can introduce an inconsistency.
▶ Example: After declaring the existence of a new type SET in

Isabelle, it is possible to add a new axiom:

axiomatization
Member :: SET⇒ SET⇒ bool

where
comprehension : ∃y.∀x. Member x y←→ P x

which enables a "proof" of the paradoxical lemma:
lemma member_iff_not_member : ∃y. Member y y←→ ¬Member y y

from which False can be derived.
▶ Yet, axiomatic reasoning is part of mathematics. We want to be

able to carry it out safely in Isabelle.



Local axiomatic reasoning in Isabelle/HOL
Fortunately, we can reason from axioms locally in a sound way. For
example, to prove results about groups, rings or vector spaces.

We later instantiate the axioms with actual groups, rings, vector
spaces.

Isabelle provides a facility for doing this called locales.

locale group =
fixes mult :: ′a ⇒ ′a ⇒ ′a and unit :: ′a
assumes left_unit : mult unit x = x

and associativity : mult x (mult y z) = mult (mult x y) z
and left_inverse : ∃y. mult y x = unit

▶ In the above, mult and unit are just arbitrary names.
▶ For example, the integers {. . . ,−2,−1, 0, 1, 2, . . .} form a

group under the operation of addition i.e. we can instantiate
mult to + and unit to 0. More on instantiation later.



Local axiomatic reasoning in Isabelle/HOL
Fortunately, we can reason from axioms locally in a sound way. For
example, to prove results about groups, rings or vector spaces.

We later instantiate the axioms with actual groups, rings, vector
spaces.

Isabelle provides a facility for doing this called locales.

locale group =
fixes mult :: ′a ⇒ ′a ⇒ ′a and unit :: ′a
assumes left_unit : mult unit x = x

and associativity : mult x (mult y z) = mult (mult x y) z
and left_inverse : ∃y. mult y x = unit

▶ In the above, mult and unit are just arbitrary names.
▶ For example, the integers {. . . ,−2,−1, 0, 1, 2, . . .} form a

group under the operation of addition i.e. we can instantiate
mult to + and unit to 0. More on instantiation later.



Local axiomatic reasoning in Isabelle/HOL
Fortunately, we can reason from axioms locally in a sound way. For
example, to prove results about groups, rings or vector spaces.

We later instantiate the axioms with actual groups, rings, vector
spaces.

Isabelle provides a facility for doing this called locales.

locale group =
fixes mult :: ′a ⇒ ′a ⇒ ′a and unit :: ′a
assumes left_unit : mult unit x = x

and associativity : mult x (mult y z) = mult (mult x y) z
and left_inverse : ∃y. mult y x = unit

▶ In the above, mult and unit are just arbitrary names.
▶ For example, the integers {. . . ,−2,−1, 0, 1, 2, . . .} form a

group under the operation of addition i.e. we can instantiate
mult to + and unit to 0. More on instantiation later.



Local axiomatic reasoning in Isabelle/HOL
Fortunately, we can reason from axioms locally in a sound way. For
example, to prove results about groups, rings or vector spaces.

We later instantiate the axioms with actual groups, rings, vector
spaces.

Isabelle provides a facility for doing this called locales.

locale group =
fixes mult :: ′a ⇒ ′a ⇒ ′a and unit :: ′a
assumes left_unit : mult unit x = x

and associativity : mult x (mult y z) = mult (mult x y) z
and left_inverse : ∃y. mult y x = unit

▶ In the above, mult and unit are just arbitrary names.

▶ For example, the integers {. . . ,−2,−1, 0, 1, 2, . . .} form a
group under the operation of addition i.e. we can instantiate
mult to + and unit to 0. More on instantiation later.



Local axiomatic reasoning in Isabelle/HOL
Fortunately, we can reason from axioms locally in a sound way. For
example, to prove results about groups, rings or vector spaces.

We later instantiate the axioms with actual groups, rings, vector
spaces.

Isabelle provides a facility for doing this called locales.

locale group =
fixes mult :: ′a ⇒ ′a ⇒ ′a and unit :: ′a
assumes left_unit : mult unit x = x

and associativity : mult x (mult y z) = mult (mult x y) z
and left_inverse : ∃y. mult y x = unit

▶ In the above, mult and unit are just arbitrary names.
▶ For example, the integers {. . . ,−2,−1, 0, 1, 2, . . .} form a

group under the operation of addition i.e. we can instantiate
mult to + and unit to 0. More on instantiation later.



Isabelle Locales

▶ Named, encapsulated contexts, highly suitable for formalising
abstract mathematics.

▶ Context as a formula:

∧ parameters︷ ︸︸ ︷
x1 . . . xn .J assumptions︷ ︸︸ ︷

A1; . . .Am K =⇒ theorem︷︸︸︷
C

▶ Locales usually have
▶ parameters, declared using fixes
▶ assumptions, declared using assumes

▶ Inside a locale, definitions can be made and theorems proven
based on the parameters and assumptions.

▶ A locale can import/extend other locales.



Isabelle Locales

▶ Named, encapsulated contexts, highly suitable for formalising
abstract mathematics.
▶ Context as a formula:

∧ parameters︷ ︸︸ ︷
x1 . . . xn .J assumptions︷ ︸︸ ︷

A1; . . .Am K =⇒ theorem︷︸︸︷
C

▶ Locales usually have
▶ parameters, declared using fixes
▶ assumptions, declared using assumes

▶ Inside a locale, definitions can be made and theorems proven
based on the parameters and assumptions.

▶ A locale can import/extend other locales.



Isabelle Locales

▶ Named, encapsulated contexts, highly suitable for formalising
abstract mathematics.
▶ Context as a formula:

∧ parameters︷ ︸︸ ︷
x1 . . . xn .J assumptions︷ ︸︸ ︷

A1; . . .Am K =⇒ theorem︷︸︸︷
C

▶ Locales usually have

▶ parameters, declared using fixes
▶ assumptions, declared using assumes

▶ Inside a locale, definitions can be made and theorems proven
based on the parameters and assumptions.

▶ A locale can import/extend other locales.



Isabelle Locales

▶ Named, encapsulated contexts, highly suitable for formalising
abstract mathematics.
▶ Context as a formula:

∧ parameters︷ ︸︸ ︷
x1 . . . xn .J assumptions︷ ︸︸ ︷

A1; . . .Am K =⇒ theorem︷︸︸︷
C

▶ Locales usually have
▶ parameters, declared using fixes

▶ assumptions, declared using assumes
▶ Inside a locale, definitions can be made and theorems proven

based on the parameters and assumptions.
▶ A locale can import/extend other locales.



Isabelle Locales

▶ Named, encapsulated contexts, highly suitable for formalising
abstract mathematics.
▶ Context as a formula:

∧ parameters︷ ︸︸ ︷
x1 . . . xn .J assumptions︷ ︸︸ ︷

A1; . . .Am K =⇒ theorem︷︸︸︷
C

▶ Locales usually have
▶ parameters, declared using fixes
▶ assumptions, declared using assumes

▶ Inside a locale, definitions can be made and theorems proven
based on the parameters and assumptions.

▶ A locale can import/extend other locales.



Isabelle Locales

▶ Named, encapsulated contexts, highly suitable for formalising
abstract mathematics.
▶ Context as a formula:

∧ parameters︷ ︸︸ ︷
x1 . . . xn .J assumptions︷ ︸︸ ︷

A1; . . .Am K =⇒ theorem︷︸︸︷
C

▶ Locales usually have
▶ parameters, declared using fixes
▶ assumptions, declared using assumes

▶ Inside a locale, definitions can be made and theorems proven
based on the parameters and assumptions.

▶ A locale can import/extend other locales.



Isabelle Locales

▶ Named, encapsulated contexts, highly suitable for formalising
abstract mathematics.
▶ Context as a formula:

∧ parameters︷ ︸︸ ︷
x1 . . . xn .J assumptions︷ ︸︸ ︷

A1; . . .Am K =⇒ theorem︷︸︸︷
C

▶ Locales usually have
▶ parameters, declared using fixes
▶ assumptions, declared using assumes

▶ Inside a locale, definitions can be made and theorems proven
based on the parameters and assumptions.

▶ A locale can import/extend other locales.



Locale Example: Finite Graphs

locale finitegraph =
fixes edges :: (′a× ′a) set and vertices :: ′a set
assumes finite_vertex_set : finite vertices

and is_graph : (u, v) ∈ edges =⇒ u ∈ vertices ∧ v ∈ vertices
begin

inductive walk :: ′a list⇒ bool where
Nil : walk []
|Singleton : v ∈ vertices =⇒ walk [v]
|Cons : J(v,w) ∈ edges;walk(w#vs)K =⇒ walk (v#w#vs)

lemma walk_edge : (v,w) ∈ edges =⇒ walk [v,w]
…

end

▶ # is the list cons operator in Isabelle.

▶ The definition of this locale can be inspected by typing
thm finitegraph_def in Isabelle:

finitegraph ?edges ?vertices ≡
finite ?vertices ∧
(∀uv.(u, v) ∈ ?edges −→ u ∈ ?vertices ∧ v ∈ ?vertices)



Locale Example: Finite Graphs

locale finitegraph =
fixes edges :: (′a× ′a) set and vertices :: ′a set
assumes finite_vertex_set : finite vertices

and is_graph : (u, v) ∈ edges =⇒ u ∈ vertices ∧ v ∈ vertices
begin

inductive walk :: ′a list⇒ bool where
Nil : walk []
|Singleton : v ∈ vertices =⇒ walk [v]
|Cons : J(v,w) ∈ edges;walk(w#vs)K =⇒ walk (v#w#vs)

lemma walk_edge : (v,w) ∈ edges =⇒ walk [v,w]
…

end

▶ # is the list cons operator in Isabelle.
▶ The definition of this locale can be inspected by typing

thm finitegraph_def in Isabelle:
finitegraph ?edges ?vertices ≡
finite ?vertices ∧
(∀uv.(u, v) ∈ ?edges −→ u ∈ ?vertices ∧ v ∈ ?vertices)



Adding Theorems to a Locale
Aside from proving a lemma within the locale definition, e.g.
walk_edge on the previous slide, we can also state lemmas that are
"in" some locale:

lemma (in group) associativity_bw :
"mult (mult x y) z = mult x (mult y z)"

apply (subst associativity)
apply (rule refl)
done

Alternatively, we can enter a locale at the theory level using the
context keyword and formalize new definitions and theorems:
context group
begin

lemma associativity_bw :
"mult (mult x y) z = mult x (mult y z)"

apply (subst associativity)
apply (rule refl)
done

end



Adding Theorems to a Locale
Aside from proving a lemma within the locale definition, e.g.
walk_edge on the previous slide, we can also state lemmas that are
"in" some locale:

lemma (in group) associativity_bw :
"mult (mult x y) z = mult x (mult y z)"

apply (subst associativity)
apply (rule refl)
done

Alternatively, we can enter a locale at the theory level using the
context keyword and formalize new definitions and theorems:
context group
begin

lemma associativity_bw :
"mult (mult x y) z = mult x (mult y z)"

apply (subst associativity)
apply (rule refl)
done

end



Locale Extension

▶ New locales can extend existing ones by adding more
parameter, assumptions and definitions. This is also known as
an import.

▶ The context of the imported locale i.e. all its assumptions,
theorems etc. are available in the extended locale.

locale weighted_finitegraph = finitegraph +
fixes weight :: (′a× ′a)⇒ nat
assumes edges_weighted : ∀e ∈ edges.∃w.weight e = w

Viewed in terms of the imported finitegraph locale (and the weighted
edges axiom), we have:

weighted_finitegraph ?edges ?vertices ?weight ≡
finitegraph ?edges ?vertices ∧ (∀e ∈ ?edges. ∃w. ?weight e = w)



Locale Extension

▶ New locales can extend existing ones by adding more
parameter, assumptions and definitions. This is also known as
an import.

▶ The context of the imported locale i.e. all its assumptions,
theorems etc. are available in the extended locale.

locale weighted_finitegraph = finitegraph +
fixes weight :: (′a× ′a)⇒ nat
assumes edges_weighted : ∀e ∈ edges.∃w.weight e = w

Viewed in terms of the imported finitegraph locale (and the weighted
edges axiom), we have:

weighted_finitegraph ?edges ?vertices ?weight ≡
finitegraph ?edges ?vertices ∧ (∀e ∈ ?edges. ∃w. ?weight e = w)



Locale Extension

▶ New locales can extend existing ones by adding more
parameter, assumptions and definitions. This is also known as
an import.

▶ The context of the imported locale i.e. all its assumptions,
theorems etc. are available in the extended locale.

locale weighted_finitegraph = finitegraph +
fixes weight :: (′a× ′a)⇒ nat
assumes edges_weighted : ∀e ∈ edges.∃w.weight e = w

Viewed in terms of the imported finitegraph locale (and the weighted
edges axiom), we have:

weighted_finitegraph ?edges ?vertices ?weight ≡
finitegraph ?edges ?vertices ∧ (∀e ∈ ?edges. ∃w. ?weight e = w)



Locale Extension

▶ New locales can extend existing ones by adding more
parameter, assumptions and definitions. This is also known as
an import.

▶ The context of the imported locale i.e. all its assumptions,
theorems etc. are available in the extended locale.

locale weighted_finitegraph = finitegraph +
fixes weight :: (′a× ′a)⇒ nat
assumes edges_weighted : ∀e ∈ edges.∃w.weight e = w

Viewed in terms of the imported finitegraph locale (and the weighted
edges axiom), we have:

weighted_finitegraph ?edges ?vertices ?weight ≡
finitegraph ?edges ?vertices ∧ (∀e ∈ ?edges. ∃w. ?weight e = w)



Instantiating Locales
▶ Concrete examples may be proven to be instances of a locale.

▶ interpretation interpretation_name : locale_name args
generates the proof obligation that the locale predicate holds of
the args.

▶ Example: A graph with one vertex and single edge from that
vertex to itself is a concrete instance of the locale finite_graph.
interpretation singleton_finitegraph : finitegraph "{(1, 1)}" "{1}"
proof

show "finite {1}" by simp
next fix u v
assume "(u, v) ∈ {(1, 1)}" then show "u ∈ {1} ∧ v ∈ {1}" by blast

qed

▶ We can prove that singleton_finitegraph is an instance of a finite
weighted graph locale by providing a weight function as an
additional argument:
interpretation
singleton_finitegraph : weighted_finitegraph "{(1, 1)}" "{1}" "λ(u, v). 1"
by (unfold_locales) simp



Instantiating Locales
▶ Concrete examples may be proven to be instances of a locale.
▶ interpretation interpretation_name : locale_name args

generates the proof obligation that the locale predicate holds of
the args.

▶ Example: A graph with one vertex and single edge from that
vertex to itself is a concrete instance of the locale finite_graph.
interpretation singleton_finitegraph : finitegraph "{(1, 1)}" "{1}"
proof

show "finite {1}" by simp
next fix u v
assume "(u, v) ∈ {(1, 1)}" then show "u ∈ {1} ∧ v ∈ {1}" by blast

qed

▶ We can prove that singleton_finitegraph is an instance of a finite
weighted graph locale by providing a weight function as an
additional argument:
interpretation
singleton_finitegraph : weighted_finitegraph "{(1, 1)}" "{1}" "λ(u, v). 1"
by (unfold_locales) simp



Instantiating Locales
▶ Concrete examples may be proven to be instances of a locale.
▶ interpretation interpretation_name : locale_name args

generates the proof obligation that the locale predicate holds of
the args.

▶ Example: A graph with one vertex and single edge from that
vertex to itself is a concrete instance of the locale finite_graph.

interpretation singleton_finitegraph : finitegraph "{(1, 1)}" "{1}"
proof

show "finite {1}" by simp
next fix u v
assume "(u, v) ∈ {(1, 1)}" then show "u ∈ {1} ∧ v ∈ {1}" by blast

qed

▶ We can prove that singleton_finitegraph is an instance of a finite
weighted graph locale by providing a weight function as an
additional argument:
interpretation
singleton_finitegraph : weighted_finitegraph "{(1, 1)}" "{1}" "λ(u, v). 1"
by (unfold_locales) simp



Instantiating Locales
▶ Concrete examples may be proven to be instances of a locale.
▶ interpretation interpretation_name : locale_name args

generates the proof obligation that the locale predicate holds of
the args.

▶ Example: A graph with one vertex and single edge from that
vertex to itself is a concrete instance of the locale finite_graph.
interpretation singleton_finitegraph : finitegraph "{(1, 1)}" "{1}"
proof

show "finite {1}" by simp
next fix u v
assume "(u, v) ∈ {(1, 1)}" then show "u ∈ {1} ∧ v ∈ {1}" by blast

qed

▶ We can prove that singleton_finitegraph is an instance of a finite
weighted graph locale by providing a weight function as an
additional argument:
interpretation
singleton_finitegraph : weighted_finitegraph "{(1, 1)}" "{1}" "λ(u, v). 1"
by (unfold_locales) simp



Instantiating Locales
▶ Concrete examples may be proven to be instances of a locale.
▶ interpretation interpretation_name : locale_name args

generates the proof obligation that the locale predicate holds of
the args.

▶ Example: A graph with one vertex and single edge from that
vertex to itself is a concrete instance of the locale finite_graph.
interpretation singleton_finitegraph : finitegraph "{(1, 1)}" "{1}"
proof

show "finite {1}" by simp
next fix u v
assume "(u, v) ∈ {(1, 1)}" then show "u ∈ {1} ∧ v ∈ {1}" by blast

qed

▶ We can prove that singleton_finitegraph is an instance of a finite
weighted graph locale by providing a weight function as an
additional argument:

interpretation
singleton_finitegraph : weighted_finitegraph "{(1, 1)}" "{1}" "λ(u, v). 1"
by (unfold_locales) simp



Instantiating Locales
▶ Concrete examples may be proven to be instances of a locale.
▶ interpretation interpretation_name : locale_name args

generates the proof obligation that the locale predicate holds of
the args.

▶ Example: A graph with one vertex and single edge from that
vertex to itself is a concrete instance of the locale finite_graph.
interpretation singleton_finitegraph : finitegraph "{(1, 1)}" "{1}"
proof

show "finite {1}" by simp
next fix u v
assume "(u, v) ∈ {(1, 1)}" then show "u ∈ {1} ∧ v ∈ {1}" by blast

qed

▶ We can prove that singleton_finitegraph is an instance of a finite
weighted graph locale by providing a weight function as an
additional argument:
interpretation
singleton_finitegraph : weighted_finitegraph "{(1, 1)}" "{1}" "λ(u, v). 1"
by (unfold_locales) simp



Summary

▶ Axiomatization at the Isabelle theory level (i.e. as an extension
of Isabelle/HOL) is not favoured as it can be unsound (see the
additional exercise on the AR web page).

▶ Locales provide a sound way of reasoning locally about
axiomatic theories.

▶ This was an introduction to locale declarations, extensions and
interpretations.
▶ There are many other features involving representation and

reasoning using locales in Isabelle.
▶ Reading: Tutorial on Locales and Locale Interpretation (on the

AR Lecture Schedule page in Learn ).


