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Axiomatic Extensions Considered Harmful

As we saw already, definitional extension is favoured over
axiomatic extension in Isabelle/HOL.

▶ Axiomatization can introduce an inconsistency.
▶ Example: After declaring the existence of a new type SET in

Isabelle, it is possible to add a new axiom:

axiomatization
Member :: SET⇒ SET⇒ bool

where
comprehension : ∃y.∀x. Member x y←→ P x

which enables a "proof" of the paradoxical lemma:
lemma member_iff_not_member : ∃y. Member y y←→ ¬Member y y

from which False can be derived.
▶ Yet, axiomatic reasoning is part of mathematics. We want to be

able to carry it out safely in Isabelle.
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Local axiomatic reasoning in Isabelle/HOL
Fortunately, we can reason from axioms locally in a sound way. For
example, to prove results about groups, rings or vector spaces.

We later instantiate the axioms with actual groups, rings, vector
spaces.

Isabelle provides a facility for doing this called locales.

locale group =
fixes mult :: ′a ⇒ ′a ⇒ ′a and unit :: ′a
assumes left_unit : mult unit x = x

and associativity : mult x (mult y z) = mult (mult x y) z
and left_inverse : ∃y. mult y x = unit

▶ In the above, mult and unit are just arbitrary names.
▶ For example, the integers {. . . ,−2,−1, 0, 1, 2, . . .} form a

group under the operation of addition i.e. we can instantiate
mult to + and unit to 0. More on instantiation later.
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Isabelle Locales

▶ Named, encapsulated contexts, highly suitable for formalising
abstract mathematics.

▶ Context as a formula:

∧ parameters︷ ︸︸ ︷
x1 . . . xn .J assumptions︷ ︸︸ ︷

A1; . . .Am K =⇒ theorem︷︸︸︷
C

▶ Locales usually have
▶ parameters, declared using fixes
▶ assumptions, declared using assumes

▶ Inside a locale, definitions can be made and theorems proven
based on the parameters and assumptions.

▶ A locale can import/extend other locales.
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Locale Example: Finite Graphs

locale finitegraph =
fixes edges :: (′a× ′a) set and vertices :: ′a set
assumes finite_vertex_set : finite vertices

and is_graph : (u, v) ∈ edges =⇒ u ∈ vertices ∧ v ∈ vertices
begin

inductive walk :: ′a list⇒ bool where
Nil : walk []
|Singleton : v ∈ vertices =⇒ walk [v]
|Cons : J(v,w) ∈ edges;walk(w#vs)K =⇒ walk (v#w#vs)

lemma walk_edge : (v,w) ∈ edges =⇒ walk [v,w]
…

end

▶ # is the list cons operator in Isabelle.

▶ The definition of this locale can be inspected by typing
thm finitegraph_def in Isabelle:

finitegraph ?edges ?vertices ≡
finite ?vertices ∧
(∀uv.(u, v) ∈ ?edges −→ u ∈ ?vertices ∧ v ∈ ?vertices)
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Adding Theorems to a Locale
Aside from proving a lemma within the locale definition, e.g.
walk_edge on the previous slide, we can also state lemmas that are
"in" some locale:

lemma (in group) associativity_bw :
"mult (mult x y) z = mult x (mult y z)"

apply (subst associativity)
apply (rule refl)
done

Alternatively, we can enter a locale at the theory level using the
context keyword and formalize new definitions and theorems:
context group
begin

lemma associativity_bw :
"mult (mult x y) z = mult x (mult y z)"

apply (subst associativity)
apply (rule refl)
done

end
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Locale Extension

▶ New locales can extend existing ones by adding more
parameter, assumptions and definitions. This is also known as
an import.

▶ The context of the imported locale i.e. all its assumptions,
theorems etc. are available in the extended locale.

locale weighted_finitegraph = finitegraph +
fixes weight :: (′a× ′a)⇒ nat
assumes edges_weighted : ∀e ∈ edges.∃w.weight e = w

Viewed in terms of the imported finitegraph locale (and the weighted
edges axiom), we have:

weighted_finitegraph ?edges ?vertices ?weight ≡
finitegraph ?edges ?vertices ∧ (∀e ∈ ?edges. ∃w. ?weight e = w)
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Instantiating Locales
▶ Concrete examples may be proven to be instances of a locale.

▶ interpretation interpretation_name : locale_name args
generates the proof obligation that the locale predicate holds of
the args.

▶ Example: A graph with one vertex and single edge from that
vertex to itself is a concrete instance of the locale finite_graph.
interpretation singleton_finitegraph : finitegraph "{(1, 1)}" "{1}"
proof

show "finite {1}" by simp
next fix u v
assume "(u, v) ∈ {(1, 1)}" then show "u ∈ {1} ∧ v ∈ {1}" by blast

qed

▶ We can prove that singleton_finitegraph is an instance of a finite
weighted graph locale by providing a weight function as an
additional argument:
interpretation
singleton_finitegraph : weighted_finitegraph "{(1, 1)}" "{1}" "λ(u, v). 1"
by (unfold_locales) simp
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Summary

▶ Axiomatization at the Isabelle theory level (i.e. as an extension
of Isabelle/HOL) is not favoured as it can be unsound (see the
additional exercise on the AR web page).

▶ Locales provide a sound way of reasoning locally about
axiomatic theories.

▶ This was an introduction to locale declarations, extensions and
interpretations.
▶ There are many other features involving representation and

reasoning using locales in Isabelle.
▶ Reading: Tutorial on Locales and Locale Interpretation (on the

AR Lecture Schedule page in Learn ).


