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A simple “while” programming language

▶ Sequence: a ; b
▶ Skip (do nothing): SKIP
▶ Variable assignment: X := 0
▶ Conditional: IF cond THEN a ELSE b FI
▶ Loop: WHILE cond DO c OD



Example

Given some X

Y := 1 ;
Z := 0 ;
WHILE Z ̸= X DO

Z := Z + 1 ;
Y := Y × Z

OD

⁇?

How do you know for sure?
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Formal Methods

▶ Formal Specification:
▶ Use mathematical notation to give a precise description of what

a program should do
▶ Formal Verification:

▶ Use logical rules to mathematically prove that a program
satisfies a formal specification

▶ Not a panacea:
▶ Formally verified programs may still not work!
▶ Must be combined with testing



Modern use

▶ Some use cases:
▶ Safety-critical systems (e.g. medical software, nuclear reactor

controllers, autonomous vehicles)
▶ Core system components (e.g. device drivers)
▶ Security (e.g. ATM software, cryptographic algorithms)
▶ Hardware verification (e.g. processors)



Formal Verification

Requires programming language semantics

What does it mean to execute a command C?
How does it affect the State?

(State = map of memory locations to values)



Formal Verification

▶ Denotational semantics: construct mathematical objects that
describe the meaning
▶ Programs = functions: JCK : State → State

▶ Operational semantics: describe the steps of computation
during program execution
▶ Small-step (only one transition): ⟨C, σ⟩ → ⟨C′, σ′⟩
▶ Big-step (entire transition to final value): ⟨C, σ⟩ ⇓ σ′

▶ Axiomatic semantics: define axioms and rules of some logic of
programs
▶ Hoare Logic {P} C {Q}



Floyd-Hoare Logic and Partial Correctness Specification

By Charles Antony (“Tony”) Richard Hoare with original ideas from
Robert Floyd - 1969

▶ Specification: Given a state that satisfies preconditions P,
executing a program C (and assuming it terminates) results in a
state that satisfies postconditions Q

▶ “Hoare triple”:
{P} C {Q}

e.g.:
{X = 1} X := X + 1 {X = 2}
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Correctness

{P} C {Q}

Partial correctness + termination = Total correctness



Trivial Specifications

{P} C {T}

{F} C {Q}



Formal specification can be tricky!
▶ Specification for the maximum of two variables:

{T} C {Y = max(X, Y)}

▶ C could be:

IF X >= Y THEN Y := X ELSE SKIP FI

▶ But C could also be:

IF X >= Y THEN X := Y ELSE SKIP FI

▶ Or even:
Y := X

▶ Better to use “auxiliary” variables (i.e. not program variables) x
and y:

{X = x ∧ Y = y} C {Y = max(x, y)}
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Hoare Logic

▶ A deductive proof system for Hoare triples {P} C {Q}

▶ Can be used for verification with forward or backward chaining

▶ Conditions P and Q are described using FOL
▶ Verification Conditions (VCs): What needs to be proven so that

{P} C {Q} is true?
▶ Proof obligations or simply proof subgoals: Working our way

through proving the VCs
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Hoare Logic Rules

▶ Similar to FOL inference rules
▶ One for each programming language construct:

▶ Assignment
▶ Sequence
▶ Skip
▶ Conditional
▶ While

▶ Rules of consequence:
▶ Precondition strengthening
▶ Postcondition weakening



Assignment Axiom

{Q[E/V]} V := E {Q}

▶ Example:

{X+ 1 = n+ 1} X := X + 1 {X = n+ 1}

▶ Backwards⁉
▶ Why not {P} V := E {P[V/E]}?

▶ because then: {X = 0} X := 1 {X = 0}

▶ Why not {P} V := E {P[E/V]}?

▶ because then: {X = 0} X := 1 {1 = 0}
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Sequencing Rule

{P} C1 {Q} {Q} C2 {R}
{P} C1 ; C2 {R}

▶ Example (Swap X Y): S := X ; X := Y ; Y := S

{X = x ∧ Y = y} S := X

{S = x ∧ Y = y}

(1)

{S = x ∧ Y = y}

X := Y

{S = x ∧ X = y}

(2)

{S = x ∧ X = y}

Y := S {Y = x ∧ X = y} (3)

(1) (2)
{X = x ∧ Y = y} S := X ; X := Y {S = x ∧ X = y} (3)

{X = x ∧ Y = y} S := X ; X := Y ; Y := S {Y = x ∧ X = y}
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Skip Axiom

{P} SKIP {P}



Conditional Rule

{P ∧ S} C1 {Q} {P ∧ ¬S} C2 {Q}
{P} IF S THEN C1 ELSE C2 FI {Q}

▶ Example (Max X Y):

{T ∧ X ≥ Y} MAX := X {MAX ≥ X ∧ MAX ≥ Y} (4)

{T ∧ ¬(X ≥ Y)} MAX := Y {MAX ≥ X ∧ MAX ≥ Y}
(5)

(4) (5)
{T} IF X ≥ Y THEN MAX := X ELSE MAX := Y FI {MAX ≥ X ∧ MAX ≥ Y}

(6)
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Summary

▶ Formal Verification: Use logical rules to mathematically prove
that a program satisfies a formal specification

▶ Programing language semantics
▶ denotational, operational, axiomatic

▶ Specification using Hoare triples {P} C {Q}
▶ Preconditions P
▶ Program C
▶ Postconditions Q

▶ Hoare Logic: A deductive proof system for Hoare triples
▶ Logical Rules:

▶ One for each program construct
▶ Partial correctness + termination = Total correctness



Next

▶ Precondition strengthening
▶ Postcondition weakening
▶ WHILE loops + invariants

To be continued…



Recommended reading

Theory:
▶ Mike Gordon, Background Reading on Hoare Logic, https://

www.cl.cam.ac.uk/archive/mjcg/HL/Notes/Notes.pdf
(pp. 1-27, 37-48)

▶ Huth & Ryan, Sections 4.1-4.3 (pp. 256-292)
▶ Nipkow & Klein, Section 12.2.1 (pp. 191-199)

Practice:
▶ Isabelle’s Hoare Logic library:

http://isabelle.in.tum.de/dist/library/HOL/HOL-Hoare

▶ Tutorial exercise

https://www.cl.cam.ac.uk/archive/mjcg/HL/Notes/Notes.pdf
https://www.cl.cam.ac.uk/archive/mjcg/HL/Notes/Notes.pdf
http://isabelle.in.tum.de/dist/library/HOL/HOL-Hoare

