
Automated Reasoning

Lecture 11: Program verification using
Hoare Logic (II)

Jacques Fleuriot
jdf@inf.ed.ac.uk

Acknowledgement: Contains material from Mike Gordon’s slides: https://www.cl.cam.ac.uk/archive/mjcg/HL/
and by Petros Papapanagiotou

jdf@inf.ed.ac.uk
https://www.cl.cam.ac.uk/archive/mjcg/HL/


Previously on Hoare Logic

A simple “while” language

▶ Sequence: a ; b
▶ Skip (do nothing): SKIP
▶ Variable assignment: X := 0
▶ Conditional:

IF cond THEN a ELSE b FI
▶ Loop: WHILE cond DO c OD

Hoare Logic

▶ {P} C {Q}
▶ Formal

specification
▶ Axiomatic

semantics
▶ Hoare Logic Rules

and examples



Conditional Rule

{P ∧ S} C1 {Q} {P ∧ ¬S} C2 {Q}
{P} IF S THEN C1 ELSE C2 FI {Q}

▶ Example (Max X Y):

{X ≥ X ∧ X ≥ Y} MAX := X {MAX ≥ X ∧MAX ≥ Y}
{T ∧ X ≥ Y} MAX := X {MAX ≥ X ∧MAX ≥ Y} (1)

{Y ≥ X ∧ Y ≥ Y} MAX := Y {MAX ≥ X ∧MAX ≥ Y}
{T ∧ ¬(X ≥ Y)} MAX := Y {MAX ≥ X ∧MAX ≥ Y}

(2)

(1) (2)
{T} IF X ≥ Y THEN MAX := X ELSE MAX := Y FI {MAX ≥ X ∧MAX ≥ Y}

(3)



What if?

{P ∧ S} C1 {Q} {P ∧ ¬S} C2 {Q}
{P} IF S THEN C1 ELSE C2 FI {Q}

▶ Example (Max X Y):

{X = max(X, Y)} MAX := X {MAX = max(X, Y)}
???

{T ∧ X ≥ Y} MAX := X {MAX = max(X, Y)} (4)

{Y = max(X, Y)} MAX := Y {MAX = max(X, Y)}
???

{T ∧ ¬(X ≥ Y)} MAX := Y {MAX = max(X, Y)}
(5)

(4) (5)
{T} IF X ≥ Y THEN MAX := X ELSE MAX := Y FI {MAX = max(X, Y)}

(6)



Precondition Strengthening

P −→ P′ {P′} C {Q}
{P} C {Q}

▶ Replace a precondition with a stronger condition
▶ Example:

X = n −→ X+ 1 = n+ 1 {X+ 1 = n+ 1} X := X + 1 {X = n+ 1}
{X = n} X := X + 1 {X = n+ 1}



Postcondition Weakening

{P} C {Q′} Q′ −→ Q
{P} C {Q}

▶ Replace a postcondition with a weaker condition
▶ Example:

{X = n} X := X + 1 {X = n+ 1} X = n+ 1 −→ X > n
{X = n} X := X + 1 {X > n}



Aha!

P −→ P′ {P′} C {Q}
{P} C {Q}

▶ Example (Max X Y):

T ∧ X ≥ Y −→ X = max(X, Y) {X = max(X, Y)} MAX := X {MAX = max(X, Y)}
{T ∧ X ≥ Y} MAX := X {MAX = max(X, Y)}

(7)

T ∧ ¬(X ≥ Y) −→ Y = max(X, Y) {Y = max(X, Y)} MAX := Y {MAX = max(X, Y)}
{T ∧ ¬(X ≥ Y)} MAX := Y {MAX = max(X, Y)}

(8)

(7) (8)
{T} IF X ≥ Y THEN MAX := X ELSE MAX := Y FI {MAX = max(X, Y)}

(9)



Verification Conditions (VCs)

{T} IF X ≥ Y THEN MAX := X ELSE MAX := Y FI {MAX = max(X, Y)}

▶ FOL VCs:
T ∧ X ≥ Y −→ X = max(X, Y)

T ∧ ¬(X ≥ Y) −→ Y = max(X, Y)

▶ Hoare Logic rules can be applied automatically to generate VCs
▶ e.g. Isabelle’s vcg tactic

▶ We need to provide proofs for the VCs / proof obligations
▶ Reduced to FOL statements
▶ From simple algebraic proofs to reasoning about inductive data

types



WHILE Rule

{P ∧ S} C {P}
{P} WHILE S DO C OD {P ∧ ¬S}

▶ P is an invariant for C whenever S holds
▶ WHILE rule: If executing C once preserves the truth of P, then

executing C any number of times also preserves the truth of P
▶ If P is an invariant for C when S holds then P is an invariant of

the whole WHILE loop, i.e. a loop invariant



WHILE Rule

{P ∧ S} C {P}
{P} WHILE S DO C OD {P ∧ ¬S}

{Y = 1 ∧ Z = 0}
WHILE Z ̸= X DO

Z := Z + 1 ;
Y := Y × Z

OD
{Y = X!}

vs.

{P}
WHILE Z ̸= X DO

Z := Z + 1 ;
Y := Y × Z

OD
{P ∧ ¬Z ̸= X}

▶ What is P?



WHILE Rule

{P ∧ S} C {P}
{P} WHILE S DO C OD {P ∧ ¬S}

{Y = 1 ∧ Z = 0}
WHILE Z ̸= X DO

Z := Z + 1 ;
Y := Y × Z

OD
{Y = X!}

vs.

{P}
WHILE Z ̸= X DO

Z := Z + 1 ;
Y := Y × Z

OD
{P ∧ ¬Z ̸= X}

▶ What is P?



WHILE Rule - How to find an invariant

{P ∧ S} C {P}
{P} WHILE S DO C OD {P ∧ ¬S}

▶ The invariant P should:
▶ Say what has been done so far together with what remains to be

done
▶ Hold at each iteration of the loop.
▶ Give the desired result when the loop terminates



WHILE Rule - Invariant VCs

{P ∧ S} C {P}
{P} WHILE S DO C OD {P ∧ ¬S}

{Y = 1 ∧ Z = 0} WHILE Z ̸= X DO Z := Z + 1 ; Y := Y × Z OD {Y = X!}
{P} WHILE Z ̸= X DO Z := Z + 1 ; Y := Y × Z OD {P ∧ ¬Z ̸= X}

▶ We need to find an invariant P such that:
▶ {P ∧ Z ̸= X} Z := Z + 1 ; Y := Y × Z {P} (WHILE rule)
▶ Y = 1 ∧ Z = 0 −→ P (precondition strengthening)
▶ P ∧ ¬(Z ̸= X) −→ Y = X! (postcondition weakening)



WHILE Rule - Loop invariant for factorial

{P ∧ Z ̸= X} Z := Z + 1 ; Y := Y × Z {P}
Y = 1 ∧ Z = 0 −→ P

P ∧ ¬(Z ̸= X) −→ Y = X!
▶ ⁇?

▶ VCs:
▶ {Y = Z! ∧ Z ̸= X} Z := Z + 1 ; Y := Y × Z {Y = Z!}

because: Y = Z! ∧ Z ̸= X −→ Y× (Z+ 1) = (Z+ 1)! and (10)

▶ Y = 1 ∧ Z = 0 −→ Y = Z!
because: 0! = 1

▶ Y = Z! ∧ ¬(Z ̸= X) −→ Y = X!
because: ¬(Z ̸= X) ↔ Z = X

{Y× (Z+ 1) = (Z+ 1)!} Z := Z + 1 {Y× Z = Z!} {Y× Z = Z!} Y := Y × Z {Y = Z!}
{Y× (Z+ 1) = (Z+ 1)!} Z := Z + 1 ; Y := Y × Z {Y = Z!}

(10)



WHILE Rule - Loop invariant for factorial

{P ∧ Z ̸= X} Z := Z + 1 ; Y := Y × Z {P}
Y = 1 ∧ Z = 0 −→ P

P ∧ ¬(Z ̸= X) −→ Y = X!
▶ Y = Z!
▶ VCs:

▶ {Y = Z! ∧ Z ̸= X} Z := Z + 1 ; Y := Y × Z {Y = Z!}
because: Y = Z! ∧ Z ̸= X −→ Y× (Z+ 1) = (Z+ 1)! and (10)

▶ Y = 1 ∧ Z = 0 −→ Y = Z!
because: 0! = 1

▶ Y = Z! ∧ ¬(Z ̸= X) −→ Y = X!
because: ¬(Z ̸= X) ↔ Z = X

{Y× (Z+ 1) = (Z+ 1)!} Z := Z + 1 {Y× Z = Z!} {Y× Z = Z!} Y := Y × Z {Y = Z!}
{Y× (Z+ 1) = (Z+ 1)!} Z := Z + 1 ; Y := Y × Z {Y = Z!}

(10)



WHILE Rule - Complete factorial example

{Y = 1 ∧ Z = 0}
{Y = Z!}

WHILE Z ̸= X DO
{Y = Z! ∧ Z ̸= X}

{Y× (Z+ 1) = (Z+ 1)!}
Z := Z + 1 ;

{Y× Z = Z!}
Y := Y × Z

{Y = Z!}
OD

{Y = Z! ∧ ¬Z ̸= X}
{Y = X!}



Another example - Multiplication!

{Y ≥ 0}
I := Y;
Z := 0;
WHILE I ̸= 0 DO

Z := Z + X ;
I := I - 1

OD
{Z = X× Y}



Another example - Multiplication!

{Y ≥ 0}
I := Y;
Z := 0;

{Invariant?}
WHILE I ̸= 0 DO

{Invariant? ∧ I ̸= 0}
Z := Z + X ;
I := I - 1

{Invariant?}
OD

{Invariant? ∧ ¬I ̸= 0}
{Z = X× Y}



Another example - Multiplication!

{Y ≥ 0}
I := Y;
Z := 0;

{Z = (Y− I)× X}
WHILE I ̸= 0 DO

{Z = (Y− I)× X ∧ I ̸= 0}
Z := Z + X ;
I := I - 1

{Z = (Y− I)× X}
OD

{Z = (Y− I)× X ∧ ¬I ̸= 0}
{Z = X× Y}



Another example - Multiplication!

{Y ≥ 0}
I := Y;
Z := 0;

{Z = (Y− I)× X}
WHILE I ̸= 0 DO

{Z = (Y− I)× X ∧ I ̸= 0}
{Z+ X = (Y− (I− 1))× X}

Z := Z + X ;
{Z = (Y− (I− 1))× X}

I := I - 1
{Z = (Y− I)× X}

OD
{Z = (Y− I)× X ∧ ¬I ̸= 0}

{Z = X× Y}



Another example - Multiplication!

{Y ≥ 0}
{0 = (I− I)× X}

I := Y;
{0 = (Y− I)× X}

Z := 0;
{Z = (Y− I)× X}

WHILE I ̸= 0 DO
{Z = (Y− I)× X ∧ I ̸= 0}

{Z+ X = (Y− (I− 1))× X}
Z := Z + X ;

{Z = (Y− (I− 1))× X}
I := I - 1

{Z = (Y− I)× X}
OD

{Z = (Y− I)× X ∧ ¬I ̸= 0}
{Z = X× Y}



Isabelle



Isabelle



Specification and correctness

{T}
I := Y;
Z := 0;
WHILE I ̸= 0 DO

Z := Z + X ;
I := I - 1

OD
{Z = X× Y}

vs.

{Y ≥ 0}
I := Y;
Z := 0;
WHILE I ̸= 0 DO

Z := Z + X ;
I := I - 1

OD
{Z = X× Y}

▶ What is the difference?



Specification and correctness

{T}
I := Y;
Z := 0;
WHILE I ̸= 0 DO

Z := Z + X ;
I := I - 1

OD
{Z = X× Y}

vs.

{Y ≥ 0}
I := Y;
Z := 0;
WHILE I ̸= 0 DO

Z := Z + X ;
I := I - 1

OD
{Z = X× Y}

▶ What is the difference? - Termination!



Hoare Logic Rules (it does!)

P −→ P′ {P′} C {Q}
{P} C {Q} PS

{P} C {Q′} Q′ −→ Q
{P} C {Q} PW

{Q[E/V]} V := E {Q} ASSIGN {P} SKIP {P} SKIP

{P} C1 {Q} {Q} C2 {R}
{P} C1 ; C2 {R}

SEQ

{P ∧ S} C1 {Q} {P ∧ ¬S} C2 {Q}
{P} IF S THEN C1 ELSE C2 FI {Q} IF

{P ∧ S} C {P}
{P} WHILE S DO C OD {P ∧ ¬S} WHILE



Other topics

{P} C {Q}

▶ Weakest preconditions, strongest postconditions



Other topics

{P} C {Q}

▶ Meta-theory: Is Hoare logic…
▶ … sound? - Yes! Based on programming language semantics

(but what about more complex languages?)
▶ … decidable? - No! {T} C {F} is the halting problem!
▶ … complete? - Relatively / only for simple languages



Other topics

{P} C {Q}

▶ Automatic Verification Condition Generation (VCG)
▶ Automatic generation/inference of loop invariants!
▶ More complex languages - e.g. Pointers = Separation logic
▶ Functional programming (recursion = induction)



Summary

▶ Precondition strengthening
▶ Postcondition weakening
▶ Automated generation of Verification Conditions (VCs)
▶ WHILE rule: Loop invariants!

▶ Properties that hold during while loops
▶ Loop invariant generation is generally undecidable



Recommended reading

Theory:
▶ Mike Gordon, Background Reading on Hoare Logic, https://

www.cl.cam.ac.uk/archive/mjcg/HL/Notes/Notes.pdf
(pp. 1-27, 37-48)

▶ Huth & Ryan, Sections 4.1-4.3 (pp. 256-292)
▶ Nipkow & Klein, Section 12.2.1 (pp. 191-199)

Practice:
▶ Isabelle’s Hoare Logic library:

http://isabelle.in.tum.de/dist/library/HOL/HOL-Hoare

▶ Tutorial exercise

https://www.cl.cam.ac.uk/archive/mjcg/HL/Notes/Notes.pdf
https://www.cl.cam.ac.uk/archive/mjcg/HL/Notes/Notes.pdf
http://isabelle.in.tum.de/dist/library/HOL/HOL-Hoare

