Automated Reasoning

Lecture 4: Propositional Reasoning in Isabelle

Jacques Fleuriot jdf@inf.ed.ac.uk

Recap

Last lecture:

- Completed the natural deduction system for propositional logic
- Started on proving propositions in Isabelle

Today:

- More details on proving propositions in Isabelle
- ► Alternative inference rules (*L*-system, a.k.a. "Sequent Calculus")
- Why should we trust Isabelle?

The rule Method

To apply an inference rule, we use rule.

Consider the theorem disjI1

 $?P \Longrightarrow ?P \lor ?Q$

Using the command

apply (rule disjI1)

on the goal

$$\llbracket A; B; C \rrbracket \Longrightarrow (A \land B) \lor D$$

yields the subgoal

$$\llbracket A; B; C \rrbracket \Longrightarrow A \land B$$

General definition of method rule

When we apply the method rule someRule where

 $someRule : \llbracket P_1; \ldots; P_m \rrbracket \Longrightarrow Q$

to the goal

$$\llbracket A_1;\ldots;A_n \rrbracket \Longrightarrow \mathbb{C}$$

where *Q* and *C* can be *unified*, we generate the goals

$$\begin{split} \llbracket A_1'; & \dots; & A_n' \rrbracket \Longrightarrow P_1' \\ & \vdots \\ \llbracket A_1'; & \dots; & A_n' \rrbracket \Longrightarrow P_m' \end{split}$$

where $A'_1, A'_2, \ldots, A'_n, P'_1, P'_2, \ldots, P'_m$ are the results of applying the substitution which unifies Q and C to $A_1, A_2, \ldots, A_n, P_1, P_2, \ldots, P_m$.

We must now derive each of the rule's assumptions using our goal's assumptions.

A Problem with rule

Consider the disjE rule:

$$\texttt{disjE}: \llbracket ?P \lor ?Q; ?P \Longrightarrow ?R; ?Q \Longrightarrow ?R \rrbracket \Longrightarrow ?R$$

If we have the goal:

$$\llbracket (A \land B) \lor C; D \rrbracket \Longrightarrow B \lor C$$

Then applying rule disjE produces three new goals:

$$\llbracket (A \land B) \lor C; D \rrbracket \Longrightarrow ?P \lor ?Q \llbracket (A \land B) \lor C; D; ?P \rrbracket \Longrightarrow B \lor C \llbracket (A \land B) \lor C; D; ?Q \rrbracket \Longrightarrow B \lor C$$

We then solve the first subgoal by applying assumption.

This seems pointlessly roundabout... we often want to *use* one of our assumptions in our proof.

The erule Method

Used when the conclusion of theorem matches the conclusion of the current goal **and** the first premise of theorem matches a premise of the current goal.

Consider the theorem $disjE^1$

$$\llbracket P \lor Q; P \Longrightarrow R; Q \Longrightarrow R \rrbracket \Longrightarrow R$$

Applying erule disjE to goal

$$\llbracket (A \land B) \lor C; D \rrbracket \Longrightarrow B \lor C$$

yields the subgoals

$$\llbracket D; (A \land B) \rrbracket \Longrightarrow B \lor C \qquad \llbracket D; C \rrbracket \Longrightarrow B \lor C$$

¹with the ? in front of variables omitted

General definition of method erule

When we apply the method erule someRule where

$$someRule: \llbracket P_1; \ldots; P_m \rrbracket \Longrightarrow Q$$

to the goal

$$\llbracket A_1;\ldots;A_n \rrbracket \Longrightarrow C$$

where P_1 and A_1 are unifiable and Q and C are unifiable, we generate the goals:

$$\begin{split} \llbracket A_2'; & \dots; & A_n' \rrbracket \Longrightarrow P_2' \\ & \vdots \\ \llbracket A_2'; & \dots; & A_n' \rrbracket \Longrightarrow P_m' \end{split}$$

where $A'_2, \ldots, A'_n, P'_2, \ldots, P'_m$ are the results of applying the substitution which unifies P_1 to A_1 and Q to C to $A_2, \ldots, A_n, P_2, \ldots, P_m$.

We **eliminate** an assumption from the rule and the goal, and must derive the rule's other assumptions using our goal's other assumptions.

General definition of method drule

When we apply the method drule someRule where

 $someRule : \llbracket P_1; \ldots; P_m \rrbracket \Longrightarrow Q$

to the goal

$$\llbracket A_1;\ldots;A_n \rrbracket \Longrightarrow C$$

where P_1 and A_1 are unifiable, we generate the goals:

$$\begin{bmatrix} A_2'; & \dots; & A_n' \end{bmatrix} \Longrightarrow P_2'$$

$$\vdots$$

$$\begin{bmatrix} A_2'; & \dots; & A_n' \end{bmatrix} \Longrightarrow P_m'$$

$$\begin{bmatrix} Q'; A_2'; & \dots; & A_n' \end{bmatrix} \Longrightarrow C'$$

where $A'_2, A'_3, \ldots, A'_n, P'_2, P'_3, \ldots, P'_m, Q', C'$ are the results of applying the substitution which unifies P_1 and A_1 to $A_2, A_3, \ldots, A_n, P_2, P_3, \ldots, P_m, Q, C$. We **delete** an assumption, replacing it with the conclusion of the rule.

General definition of method frule

When we apply the method frule someRule where

 $someRule : \llbracket P_1; \ldots; P_m \rrbracket \Longrightarrow Q$

to the goal

$$\llbracket A_1;\ldots;A_n \rrbracket \Longrightarrow C$$

where P_1 and A_1 are unifiable, we generate the goals:

$$\begin{bmatrix} A_1'; A_2'; & \dots; & A_n' \end{bmatrix} \Longrightarrow P_2'$$

$$\vdots$$

$$\begin{bmatrix} A_1'; A_2'; & \dots; & A_n' \end{bmatrix} \Longrightarrow P_m'$$

$$\begin{bmatrix} Q'; A_1'; A_2'; & \dots; & A_n' \end{bmatrix} \Longrightarrow C'$$

where $A'_1, A'_2, \ldots, A'_n, P'_2, \ldots, P'_m, Q', C'$ are the results of applying the substitution which unifies P_1 and A_1 to $A_1, A_2, \ldots, A_n, P_2, \ldots, P_m, Q, C$. This is like drule except the assumption in our goal is kept.

More Methods

rule_tac, erule_tac, drule_tac and frule_tac are like their counterparts, but you can give substitutions for variables in the rule before they are applied.

Example

apply (erule_tac Q=" $B \wedge D$ " in conjE) applied to the subgoal

$$\llbracket A \land B; C \land B \land D \rrbracket \Longrightarrow B \land D$$

generates the new goal

$$\llbracket A \land B; C; B \land D \rrbracket \Longrightarrow B \land D$$

- conjE: $\llbracket P \land Q; \llbracket P; Q \rrbracket \Longrightarrow R \rrbracket \Longrightarrow R$
- Isabelle also provides advanced tactics, like simp and auto which perform some automatic deduction.

L-systems/Sequent Calculus

The erule tactic points to another way of phrasing a system of inference rules in a system with sequents $\Gamma \vdash A$.

Instead of *elimination* rules:

$$\frac{\Gamma \vdash P \lor Q \qquad \Gamma, P \vdash R \qquad \Gamma, Q \vdash R}{\Gamma \vdash R} \quad \text{(disjE)}$$

Have *left introduction rules* (all the introduction rules in natural deduction introduce connectives on the right-hand side of the \vdash):

$$\frac{\Gamma, P \vdash R \qquad \Gamma, Q \vdash R}{\Gamma, P \lor Q \vdash R}$$

This corresponds to applying rules using erule in Isabelle.

The *left introduction rules* are often much easier to use in a backwards, goal-directed style.

L-systems/Sequent Calculus

The following *L*-System (a.k.a. Sequent Calculus) rules are an alternative sound and complete proof system for propositional logic:

 $\overline{\Gamma, P \vdash P}$ (assumption) $\frac{\Gamma \vdash P \quad \Gamma \vdash Q}{\Gamma \vdash P \land Q} \quad \text{(conjI)} \qquad \qquad \frac{\Gamma, P, Q \vdash R}{\Gamma, P \land Q \vdash R} \quad \text{(e conjE)}$ $\frac{\Gamma \vdash P}{\Gamma \vdash P \lor Q} \text{ (disjI1)} \qquad \frac{\Gamma \vdash Q}{\Gamma \vdash P \lor Q} \text{ (disjI2)} \qquad \frac{\Gamma \vdash P \lor Q \vdash R}{\Gamma \vdash P \lor Q \vdash R} \text{ (e disjE)}$ $\frac{\Gamma, A \vdash B}{\Gamma \vdash A \longrightarrow B} \text{ (impI)} \qquad \qquad \frac{\Gamma \vdash P \quad \Gamma, Q \vdash R}{\Gamma P \longrightarrow Q \vdash B} \text{ (e impE)}$ no right-intro rule for \bot $\Gamma, \bot \vdash P$ (e FalseE) $\frac{\Gamma, P \vdash \bot}{\Gamma \vdash \neg P} \text{ (notI)} \qquad \frac{\Gamma \vdash P}{\Gamma \neg P \vdash R} \text{ (e notE)} \qquad \frac{\Gamma \vdash \neg P \lor P}{\Gamma \vdash \neg P \lor P} \text{ (excluded_middle)}$

Note: e someRule is short for erule someRule.

Note: in the above presentation left-hand-sides are sets of formulas.

An Old Friend Revisited

Re-using proofs: The Cut rule

So far, all proofs have been self-contained; they have only used the pre-existing rules of inference.

By the completeness theorem, this suffices to prove everything that is true, but can lead to extremely repetitive proofs.

Re-using proofs: The Cut rule

So far, all proofs have been self-contained; they have only used the pre-existing rules of inference.

By the completeness theorem, this suffices to prove everything that is true, but can lead to extremely repetitive proofs.

The cut rule:

(we "cut" *P* into the proof)

$$\frac{\Gamma \vdash P \qquad \Gamma, P \vdash Q}{\Gamma \vdash Q}$$

allows the use of a *lemma* P in a proof of Q. We can now reuse P multiple times in the proof of Q.

Re-using proofs: The Cut rule

So far, all proofs have been self-contained; they have only used the pre-existing rules of inference.

By the completeness theorem, this suffices to prove everything that is true, but can lead to extremely repetitive proofs.

The cut rule:

(we "cut" *P* into the proof)

$$\frac{\Gamma \vdash P \qquad \Gamma, P \vdash Q}{\Gamma \vdash Q}$$

allows the use of a *lemma* P in a proof of Q. We can now reuse P multiple times in the proof of Q.

In Isabelle: cut_tac lemmaName — adds the conclusion of lemmaName as a new assumption, and its assumptions as new subgoals subgoal_tac P — adds P as a new assumption, and introduces P as a new subgoal.

Why should you believe Isabelle?

When Isabelle says "No subgoals!" why should we believe that we have *really* proved something? Is Isabelle sound?

It is doing non-trivial work behind the scenes: unification, rewriting, maintaining a database of theorems+assumptions, automatic proof.

Why should you believe Isabelle?

When Isabelle says "No subgoals!" why should we believe that we have *really* proved something? Is Isabelle sound?

It is doing non-trivial work behind the scenes: unification, rewriting, maintaining a database of theorems+assumptions, automatic proof.

Isabelle uses two strategies to maintain soundness:

- A small trusted kernel: internally, every proof is broken down into primitive rule applications which are checked by a small piece of hand-verified code. This is the "LCF" model. So new *proof procedures* cannot introduce unsoundness.
- Encourages *definitional* extension of the logic: new concepts are introduced by definition rather than axiomatisation (more on this in Lecture 6). So new definitions cannot introduce unsoundness.

Why should you believe Isabelle?

When Isabelle says "No subgoals!" why should we believe that we have *really* proved something? Is Isabelle sound?

It is doing non-trivial work behind the scenes: unification, rewriting, maintaining a database of theorems+assumptions, automatic proof.

Isabelle uses two strategies to maintain soundness:

- A small trusted kernel: internally, every proof is broken down into primitive rule applications which are checked by a small piece of hand-verified code. This is the "LCF" model. So new *proof procedures* cannot introduce unsoundness.
- Encourages *definitional* extension of the logic: new concepts are introduced by definition rather than axiomatisation (more on this in Lecture 6). So new definitions cannot introduce unsoundness.

Threats to (practical) soundness still exist, including: Have we proved what we thought we proved? Are the formulas displayed on screen correctly? ...

See: Pollack, R. How to Believe a Machine-Checked Proof, 1997 (non-examinable).

Summary

More tools for proving propositions in Isabelle

- The erule, drule, frule methods
- Their —_tac variants
- L-systems, and Cut rules (cut_tac, subgoal_tac).
- See the propositional logic exercises and examples:
 - Self-help Exercise Sheet 1 and Additional Exercise on the AR webpage;
 - The Isabelle theory file Prop.thy;
 - Start using Isabelle (if you haven't done so already).
- How Isabelle maintains soundness
 - Small trusted kernel
 - Definitional extension instead of axiomatic extension

Next time:

First-Order Logic: $\forall x.P$ and $\exists x.P$