
Automated Reasoning

Lecture 4: Propositional Reasoning in Isabelle

Jacques Fleuriot
jdf@inf.ed.ac.uk

jdf@inf.ed.ac.uk


Recap

Last lecture:
▶ Completed the natural deduction system for propositional logic
▶ Started on proving propositions in Isabelle

Today:
▶ More details on proving propositions in Isabelle
▶ Alternative inference rules (L-system, a.k.a. “Sequent Calculus”)
▶ Why should we trust Isabelle?



The rule Method

To apply an inference rule, we use rule.

Consider the theorem disjI1

?P =⇒ ?P∨ ?Q

Using the command

apply (rule disjI1)

on the goal JA;B;CK =⇒ (A∧ B)∨ D

yields the subgoal JA;B;CK =⇒ A∧ B



General definition of method rule

When we apply the method rule someRule where

someRule : JP1; . . . ; PmK =⇒ Q

to the goal JA1; . . . ;AnK =⇒ C

where Q and C can be unified, we generate the goals

JA ′
1 ; . . . ; A ′

nK =⇒ P ′
1

...JA ′
1 ; . . . ; A ′

nK =⇒ P ′
m

where A ′
1,A

′
2, . . . ,A

′
n, P

′
1, P

′
2, . . . , P

′
m are the results of applying the

substitution which unifies Q and C to A1,A2, . . . ,An, P1, P2, . . . , Pm.

We must now derive each of the rule’s assumptions using our goal’s
assumptions.



A Problem with rule

Consider the disjE rule:

disjE : J?P∨ ?Q ; ?P =⇒ ?R ; ?Q =⇒ ?RK =⇒ ?R

If we have the goal:

J(A∧ B)∨ C ;DK =⇒ B∨ C

Then applying rule disjE produces three new goals:

J(A∧ B)∨ C ;DK =⇒ ?P∨ ?QJ(A∧ B)∨ C ;D ; ?PK =⇒ B∨ CJ(A∧ B)∨ C ;D ; ?QK =⇒ B∨ C

We then solve the first subgoal by applying assumption.

This seems pointlessly roundabout… we often want to use one of our
assumptions in our proof.



The erule Method

Used when the conclusion of theorem matches the conclusion of the
current goal and the first premise of theorem matches a premise of
the current goal.

Consider the theorem disjE ¹

JP∨ Q ; P =⇒ R ;Q =⇒ RK =⇒ R

Applying erule disjE to goal

J(A∧ B)∨ C ;DK =⇒ B∨ C

yields the subgoals

JD ; (A∧ B)K =⇒ B∨ C JD ;CK =⇒ B∨ C

¹with the ? in front of variables omitted



General definition of method erule

When we apply the method erule someRule where

someRule : JP1; . . . ; PmK =⇒ Q

to the goal JA1; . . . ;AnK =⇒ C

where P1 and A1 are unifiable and Q and C are unifiable, we generate the
goals:

JA ′
2 ; . . . ; A ′

nK =⇒ P ′
2

...JA ′
2 ; . . . ; A ′

nK =⇒ P ′
m

where A ′
2, . . . ,A

′
n, P

′
2, . . . , P

′
m are the results of applying the substitution

which unifies P1 to A1 and Q to C to A2, . . . ,An, P2, . . . , Pm.

We eliminate an assumption from the rule and the goal, and must derive
the rule’s other assumptions using our goal’s other assumptions.



General definition of method drule

When we apply the method drule someRule where

someRule : JP1; . . . ; PmK =⇒ Q

to the goal JA1; . . . ;AnK =⇒ C

where P1 and A1 are unifiable, we generate the goals:

JA ′
2 ; . . . ; A ′

nK =⇒ P ′
2

...JA ′
2 ; . . . ; A ′

nK =⇒ P ′
mJQ ′;A ′

2 ; . . . ; A ′
nK =⇒ C ′

where A ′
2,A

′
3, . . . ,A

′
n, P

′
2, P

′
3 . . . , P

′
m,Q

′,C ′ are the results of applying the
substitution which unifies P1 and A1 to A2,A3, . . . ,An, P2, P3, . . . , Pm,Q,C.

We delete an assumption, replacing it with the conclusion of the rule.



General definition of method frule

When we apply the method frule someRule where

someRule : JP1; . . . ; PmK =⇒ Q

to the goal JA1; . . . ;AnK =⇒ C

where P1 and A1 are unifiable, we generate the goals:

JA ′
1 ;A

′
2 ; . . . ; A ′

nK =⇒ P ′
2

...JA ′
1 ;A

′
2 ; . . . ; A ′

nK =⇒ P ′
mJQ ′;A ′

1 ;A
′
2 ; . . . ; A ′

nK =⇒ C ′

where A ′
1,A

′
2, . . . ,A

′
n, P

′
2, . . . , P

′
m,Q

′,C ′ are the results of applying the
substitution which unifies P1 and A1 to A1,A2, . . . ,An, P2, . . . , Pm,Q,C.

This is like drule except the assumption in our goal is kept.



More Methods
▶ rule_tac, erule_tac, drule_tac and frule_tac are like

their counterparts, but you can give substitutions for variables
in the rule before they are applied.

Example

apply (erule_tac Q="B∧ D" in conjE)
applied to the subgoal

JA∧ B ;C∧ B∧ DK =⇒ B∧ D

generates the new goal

JA∧ B ;C ;B∧ DK =⇒ B∧ D

▶ conjE: JP∧ Q ; JP ;QK =⇒ RK =⇒ R
▶ Isabelle also provides advanced tactics, like simp and auto

which perform some automatic deduction.



L-systems/Sequent Calculus

The erule tactic points to another way of phrasing a system of
inference rules in a system with sequents Γ ⊢ A.

Instead of elimination rules:

Γ ⊢ P∨ Q Γ, P ⊢ R Γ,Q ⊢ R

Γ ⊢ R
(disjE)

Have left introduction rules (all the introduction rules in natural
deduction introduce connectives on the right-hand side of the ⊢):

Γ, P ⊢ R Γ,Q ⊢ R

Γ, P∨ Q ⊢ R

This corresponds to applying rules using erule in Isabelle.

The left introduction rules are often much easier to use in a
backwards, goal-directed style.



L-systems/Sequent Calculus
The following L-System (a.k.a. Sequent Calculus) rules are an alternative
sound and complete proof system for propositional logic:

Γ, P ⊢ P
(assumption)

Γ ⊢ P Γ ⊢ Q

Γ ⊢ P ∧ Q
(conjI)

Γ, P,Q ⊢ R

Γ, P ∧ Q ⊢ R
(e conjE)

Γ ⊢ P

Γ ⊢ P ∨ Q
(disjI1)

Γ ⊢ Q

Γ ⊢ P ∨ Q
(disjI2)

Γ, P ⊢ R Γ,Q ⊢ R

Γ, P ∨ Q ⊢ R
(e disjE)

Γ,A ⊢ B

Γ ⊢ A → B
(impI)

Γ ⊢ P Γ,Q ⊢ R

Γ, P → Q ⊢ R
(e impE)

no right-intro rule for⊥ Γ,⊥ ⊢ P
(e FalseE)

Γ, P ⊢ ⊥
Γ ⊢ ¬P

(notI)
Γ ⊢ P

Γ,¬P ⊢ R
(e notE)

Γ ⊢ ¬P ∨ P
(excluded_middle)

Note: e someRule is short for erule someRule.

Note: in the above presentation left-hand-sides are sets of formulas.



An Old Friend Revisited

S ⊢ S
(assumption)

S,¬S ⊢ R
(e notE)

R,¬S ⊢ R
(assumption)

(S ∨ R),¬S ⊢ R
(e disjE)

(S ∨ R) ∧ ¬S ⊢ R
(e ConjE)

⊢ (S ∨ R) ∧ ¬S → R
(impI)



Re-using proofs: The Cut rule
So far, all proofs have been self-contained; they have only used the
pre-existing rules of inference.

By the completeness theorem, this suffices to prove everything that
is true, but can lead to extremely repetitive proofs.

The cut rule: (we “cut” P into the proof)

Γ ⊢ P Γ, P ⊢ Q

Γ ⊢ Q

allows the use of a lemma P in a proof of Q. We can now reuse P
multiple times in the proof of Q.

In Isabelle:
cut_tac lemmaName — adds the conclusion of lemmaName as a new

assumption, and its assumptions as new subgoals
subgoal_tac P — adds P as a new assumption, and introduces

P as a new subgoal.



Re-using proofs: The Cut rule
So far, all proofs have been self-contained; they have only used the
pre-existing rules of inference.

By the completeness theorem, this suffices to prove everything that
is true, but can lead to extremely repetitive proofs.

The cut rule: (we “cut” P into the proof)

Γ ⊢ P Γ, P ⊢ Q

Γ ⊢ Q

allows the use of a lemma P in a proof of Q. We can now reuse P
multiple times in the proof of Q.

In Isabelle:
cut_tac lemmaName — adds the conclusion of lemmaName as a new

assumption, and its assumptions as new subgoals
subgoal_tac P — adds P as a new assumption, and introduces

P as a new subgoal.



Re-using proofs: The Cut rule
So far, all proofs have been self-contained; they have only used the
pre-existing rules of inference.

By the completeness theorem, this suffices to prove everything that
is true, but can lead to extremely repetitive proofs.

The cut rule: (we “cut” P into the proof)

Γ ⊢ P Γ, P ⊢ Q

Γ ⊢ Q

allows the use of a lemma P in a proof of Q. We can now reuse P
multiple times in the proof of Q.

In Isabelle:
cut_tac lemmaName — adds the conclusion of lemmaName as a new

assumption, and its assumptions as new subgoals
subgoal_tac P — adds P as a new assumption, and introduces

P as a new subgoal.



Why should you believe Isabelle?
When Isabelle says “No subgoals!” why should we believe that we
have really proved something? Is Isabelle sound?
It is doing non-trivial work behind the scenes: unification, rewriting,
maintaining a database of theorems+assumptions, automatic proof.

Isabelle uses two strategies to maintain soundness:
▶ A small trusted kernel: internally, every proof is broken down

into primitive rule applications which are checked by a small
piece of hand-verified code. This is the “LCF” model. So new
proof procedures cannot introduce unsoundness.

▶ Encourages definitional extension of the logic: new concepts
are introduced by definition rather than axiomatisation (more
on this in Lecture 6). So new definitions cannot introduce
unsoundness.

Threats to (practical) soundness still exist, including: Have we
proved what we thought we proved? Are the formulas displayed on
screen correctly? …
See: Pollack, R. How to Believe a Machine-Checked Proof, 1997 (non-examinable).



Why should you believe Isabelle?
When Isabelle says “No subgoals!” why should we believe that we
have really proved something? Is Isabelle sound?
It is doing non-trivial work behind the scenes: unification, rewriting,
maintaining a database of theorems+assumptions, automatic proof.
Isabelle uses two strategies to maintain soundness:
▶ A small trusted kernel: internally, every proof is broken down

into primitive rule applications which are checked by a small
piece of hand-verified code. This is the “LCF” model. So new
proof procedures cannot introduce unsoundness.

▶ Encourages definitional extension of the logic: new concepts
are introduced by definition rather than axiomatisation (more
on this in Lecture 6). So new definitions cannot introduce
unsoundness.

Threats to (practical) soundness still exist, including: Have we
proved what we thought we proved? Are the formulas displayed on
screen correctly? …
See: Pollack, R. How to Believe a Machine-Checked Proof, 1997 (non-examinable).



Why should you believe Isabelle?
When Isabelle says “No subgoals!” why should we believe that we
have really proved something? Is Isabelle sound?
It is doing non-trivial work behind the scenes: unification, rewriting,
maintaining a database of theorems+assumptions, automatic proof.
Isabelle uses two strategies to maintain soundness:
▶ A small trusted kernel: internally, every proof is broken down

into primitive rule applications which are checked by a small
piece of hand-verified code. This is the “LCF” model. So new
proof procedures cannot introduce unsoundness.

▶ Encourages definitional extension of the logic: new concepts
are introduced by definition rather than axiomatisation (more
on this in Lecture 6). So new definitions cannot introduce
unsoundness.

Threats to (practical) soundness still exist, including: Have we
proved what we thought we proved? Are the formulas displayed on
screen correctly? …
See: Pollack, R. How to Believe a Machine-Checked Proof, 1997 (non-examinable).



Summary

▶ More tools for proving propositions in Isabelle
▶ The erule, drule, frule methods
▶ Their —_tac variants
▶ L-systems, and Cut rules (cut_tac, subgoal_tac).
▶ See the propositional logic exercises and examples:

▶ Self-help Exercise Sheet 1 and Additional Exercise on the AR
webpage;

▶ The Isabelle theory file Prop.thy;
▶ Start using Isabelle (if you haven’t done so already).

▶ How Isabelle maintains soundness
▶ Small trusted kernel
▶ Definitional extension instead of axiomatic extension

▶ Next time:
▶ First-Order Logic: ∀x.P and ∃x.P


