Isabelle / Proof General Cheat Sheet

APPLYING RULES AND THEOREMS

apply (rule theorem): use when the conclusion of theorem matches the conclu-
sion of the current goal

apply (erule theorem): use when the conclusion of theorem matches the con-
clusion of the current goal and the first premise of theorem matches a premise
of the current goal

apply (frule theorem): use when the first premise of theorern matches a premise
of the current goal

apply (drule theorem): like frule except it deletes the matching premise
back: useful if erule/drule/frule are choosing the wrong premise

apply assumption: when the conclusion of the current goal is also a premise

AUTOMATED METHODS

apply auto: applies automated tools to look for solution

apply force: like auto, but “do or die” (and only applies to the first goal)
apply clarify: like auto, but less aggressive

apply simp: simplifies current goal using term rewriting

apply (simp add:theorems): like the simplifier, but tells the simplifier to use ad-
ditional theorems as well (useful groups of theorems for calculation are ring_simps
and field_simps)

apply clarsimp: a combination of clarify and simp
apply blast: a powerful first-order prover

apply arith: automatically solves linear arithmetic problems

OTHER METHODS

apply (insert theorem): adds theorem as an additional premise

apply (subgoal_tac formula): adds formula as an additional premise, and also
as a new goal to be proven later

apply (induct_tac variable): splits into the appropriate cases to do induction
on variable (when variable has a natural notion of induction, for instance, it is
a natural number)

apply (ruletac v1 = t; and ... and v, = t, in theorem): like rule, but
allows the certain variables to be chosen manually (also erule_tac,drule_tac, and
frule_tac are analagous)

apply (case_tac ...): splits on cases

HANDLING EQUALITY

apply (subst theorem): applies a substitution (theorem should be an equality)
apply (subst (asm) theorem): applies a substitution to one of the hypotheses
apply (subst (i...]) theorem): applies a substitution at the positions indicated

apply (subst (asm) (i...j) theorem): applies a substitution at the positions
indicated in the hypotheses

apply (erule ssubst): applies a substitution from the hypotheses (useful in
conjunction with insert).

apply (erule subst): applies a substitution from the hypotheses (in the right-
to-left direction of the equality).

LOGICAL RULES

Propositional Logic:

notl: (A = False) = —A

notE: [|-A; A|] = B

congl: [|A; B|] = AAB

congE: [|ANB;[|A; Bl = Cl] = C
conjunctl: PNQ = P

conjunct2: PANQ = Q
context_conjl: [|[P; P = Q|| = PAQ
disjI1: A= AV B

disjI2: A= BV A

disjCI: (-Q = P) = PV Q
excluded_middle: -PV P

disjE: [|[AVB;A=C;B=C||=C
impl: (A= B) = (A — B)

impE: |[A— B;A;B=C||=C

impCE: [|[P — Q;-P=R;Q = R||= R
mp: [|[A — B;A|] = B

iffT: |A= B;B= A||=A=DB

iffE: [|[A=B;[|A— B;B— A||=C||=C
classical: (A= A)= A

notnotD: -—P = P

de_Morgan_disj: (-(PV Q)) = (=P A Q)
de_Morgan_conj: (=(P AQ)) = (=P V Q)
disj-notl: (-PV Q)= (P — Q)

disj-not2: (PV -Q) = (Q — P)

First Order Logic:

ex]: Pa = Jx.Px

exE: [|3z.Px;lx.Px = C|| = C
alll: (Nz.Px) = Vz.Px

spec: Vx.Px = Px

allE: [|Vx.Px; Px = R|] = R

Equality:
sym: x=y=>y==x
trans: [[x=y;y=z|| =2 =2

EMACS/PROOF GENERAL
“C” stands for the control key, and “C-key” means holding down the control
key together with key.
C-k: delete the rest of the line
C-a: jump to the beginning of the current line
C-e: jump to the end of the current line
C-c C-n: process the next line in Isabelle (the next button)
C-c C-u: push back the processed part of the text by one line (the undo button)
C-c C-return: evaluate up to where the cursor is

C-c C-p: show the current state of a proof (for instance, in place of an error
message currently being shown)

OTHER TIPS

Use the browser pages to find theorems.

You can derive your own theorems, and use them as rules.
Use the “find theorems” command in Proof General.

Under the Proof General menu, if you choose options/electric-terminator, the
next line of the proof is sent to Isabelle automatically whenever you end a line
with a semicolon.

