
Isabelle / Proof General Cheat Sheet

Applying rules and theorems

apply (rule theorem): use when the conclusion of theorem matches the conclu-
sion of the current goal

apply (erule theorem): use when the conclusion of theorem matches the con-
clusion of the current goal and the first premise of theorem matches a premise
of the current goal

apply (frule theorem): use when the first premise of theorem matches a premise
of the current goal

apply (drule theorem): like frule except it deletes the matching premise

back: useful if erule/drule/frule are choosing the wrong premise

apply assumption: when the conclusion of the current goal is also a premise

Automated methods

apply auto: applies automated tools to look for solution

apply force: like auto, but “do or die” (and only applies to the first goal)

apply clarify: like auto, but less aggressive

apply simp: simplifies current goal using term rewriting

apply (simp add:theorems): like the simplifier, but tells the simplifier to use ad-
ditional theorems as well (useful groups of theorems for calculation are ring simps
and field simps)

apply clarsimp: a combination of clarify and simp

apply blast: a powerful first-order prover

apply arith: automatically solves linear arithmetic problems

Other methods

apply (insert theorem): adds theorem as an additional premise

1



apply (subgoal tac formula): adds formula as an additional premise, and also
as a new goal to be proven later

apply (induct tac variable): splits into the appropriate cases to do induction
on variable (when variable has a natural notion of induction, for instance, it is
a natural number)

apply (rule tac v1 = t1 and . . . and vn = tn in theorem): like rule, but
allows the certain variables to be chosen manually (also erule tac,drule tac, and
frule tac are analagous)

apply (case tac . . . ): splits on cases

Handling equality

apply (subst theorem): applies a substitution (theorem should be an equality)

apply (subst (asm) theorem): applies a substitution to one of the hypotheses

apply (subst (i. . . j) theorem): applies a substitution at the positions indicated

apply (subst (asm) (i. . . j) theorem): applies a substitution at the positions
indicated in the hypotheses

apply (erule ssubst): applies a substitution from the hypotheses (useful in
conjunction with insert).

apply (erule subst): applies a substitution from the hypotheses (in the right-
to-left direction of the equality).

Logical rules

Propositional Logic:
notI : (A ⇒ False) ⇒ ¬A
notE : [|¬A;A|] ⇒ B
conjI : [|A;B|] ⇒ A ∧B
conjE : [|A ∧B; [|A;B|] ⇒ C|] ⇒ C
conjunct1 : P ∧Q ⇒ P
conjunct2 : P ∧Q ⇒ Q
context conjI : [|P ;P ⇒ Q|] ⇒ P ∧Q
disjI1 : A ⇒ A ∨B
disjI2 : A ⇒ B ∨A
disjCI : (¬Q ⇒ P ) ⇒ P ∨Q
excluded middle: ¬P ∨ P
disjE : [|A ∨B;A ⇒ C;B ⇒ C|] ⇒ C
impI : (A ⇒ B) ⇒ (A → B)

2



impE : [|A → B;A;B ⇒ C|] ⇒ C
impCE : [|P → Q;¬P ⇒ R;Q ⇒ R|] ⇒ R
mp: [|A → B;A|] ⇒ B
iffI : [|A ⇒ B;B ⇒ A|] ⇒ A = B
iffE : [|A = B; [|A → B;B → A|] ⇒ C|] ⇒ C
classical : (¬A ⇒ A) ⇒ A
notnotD : ¬¬P ⇒ P
de Morgan disj : (¬(P ∨Q)) = (¬P ∧ ¬Q)
de Morgan conj : (¬(P ∧Q)) = (¬P ∨ ¬Q)
disj not1 : (¬P ∨Q) = (P → Q)
disj not2 : (P ∨ ¬Q) = (Q → P )

First Order Logic:
exI : Pa ⇒ ∃x.Px
exE : [|∃x.Px; !!x.Px ⇒ C|] ⇒ C
allI : (!!x.Px) ⇒ ∀x.Px
spec: ∀x.Px ⇒ Px
allE : [|∀x.Px;Px ⇒ R|] ⇒ R

Equality:
sym: x = y ⇒ y = x
trans: [|x = y; y = z|] ⇒ x = z

Emacs/Proof General

“C” stands for the control key, and “C-key” means holding down the control
key together with key.

C-k: delete the rest of the line

C-a: jump to the beginning of the current line

C-e: jump to the end of the current line

C-c C-n: process the next line in Isabelle (the next button)

C-c C-u: push back the processed part of the text by one line (the undo button)

C-c C-return: evaluate up to where the cursor is

C-c C-p: show the current state of a proof (for instance, in place of an error
message currently being shown)

Other tips

Use the browser pages to find theorems.

3



You can derive your own theorems, and use them as rules.

Use the “find theorems” command in Proof General.

Under the Proof General menu, if you choose options/electric-terminator, the
next line of the proof is sent to Isabelle automatically whenever you end a line
with a semicolon.

4


