
Distributed Systems
Fall 2024

Yuvraj Patel



Who am I?

Lecturer (Assistant Professor) in ICSA, School of Informatics
Ph.D. from the University of Wisconsin, Madison, USA

• Thesis: Fair and Secure Synchronization for Non-Cooperative Concurrent 
Systems

• Ph.D. Minor in Psychology

Research Area - Operating Systems (Classical & Quantum Computing), 
Storage & File Systems, Concurrency, Security, Distributed Systems

2



Who am I (contd..)?

Prior to Grad School:
Spent 9 years writing Operating System and File System code
Code written by me executes thousands of times every second

• Bank transactions 
• Car production – BMW, Daimler Chrysler
• Movie production – Avatar
• Large Hadron Collider and many more…. 

3



Call Me

Yuvraj or Yuvi or UV (but not IR)
Please do not address me as

• Professor/Prof. Yuvraj Prof. Patel/ Dr. Patel

4



Today’s Agenda

What will you do in this course?
• How will you be successful?

Understand what distributed systems are? What are the different 
architectures for distributed systems?

5



Read

Read the recommended material comprising
• Book: Distributed Systems by Maarten Van Steen & Andrew S. Tanenbaum 

(Online free book available)
• Book: Distributed systems concepts and design by George Coulouris, Jean 

Dollimore, Tim Kindberg & Gordon Blair (Book available online through 
Library)

• Papers cited on the Schedule Page

Reading will help you improve your thought process

6



Start Coursework Promptly

Coursework (25% of final grade)
1 project involving building a distributed component

• Release date - 21/10/2024
• 4 weeks to work on the project
• Group Project
• Will have to spend 40 hours individually

7



Don’t Cheat: Academic Integrity

It is OK to:
• Discuss project or specification in general terms (when to return an error?)
• Discuss how different library routines/system calls work
• Ask TAs, Professor for help

It is NOT OK to:
• Use code samples for similar problems you may find on-line including 

stackoverflow, ChatGPT, etc.
• Bug someone else for a lot of help
• Share your code directly with other people/project groups
• Post your code in a public place

We will run tools to check for similar code across groups/individuals

8



Exam

Exam (worth 75% of the final grade)
• Assess Distributed Systems concepts discussed in the class
• One final exam
• Will share more details towards the end of the semester

Learn through
• Lecture Material
• Coursework
• Piazza discussion
• Group study
• Discussion with others (which I highly recommend)

9



Ask for Additional Help

Two TAs
• Leping Li & Xueheng Wang
• Past students
• Office hours specifically during coursework

10

Leping Li
2nd year Ph.D. student
Research: Concurrency, OS
Tips to succeed: Read the course 
material; Attend the lectures; Do 
not hesitate to ask questions; 
Start the project early

Xueheng Wang
2nd year Ph.D. student
Research: Concurrency, DS, LLM
Tips to succeed: Always attend classes; 
Think more and ask more questions; Focus 
on understanding than memorizing; Start 
working on project early



Ask for Additional Help

Two TAs
• Leping Li & Xueheng Wang
• Past students
• Office hours specifically during coursework

Piazza
• Tends to be active and prompt
• Learn yourself and help others
• School will use Piazza participation to gauge engagement
• Consider Piazza as a knowledge repository
• Check Piazza regularly for course updates

My office hours ???

11



Course Outline

Introduction and overview - Need for distributed systems
Architecture & Communication - Scalability, Load balancing, 
Partitioning, RPC
Fault Tolerance - Failure models, Reliability, Recovery
Coordination - Ordering & Causality, Distributed transactions, 
Concurrency Control, Consensus/Agreement
Consistency & Replication - Epidemic algorithms, Consistency 
Models, Replica management
Distributed Storage - File systems, Large Scale systems
Issues - Energy/Power, Security, Local OS Support, Verification, 
Testing

12



Learning Outcomes

Develop an understanding of the principles of distributed systems and be 
able to demonstrate this by explaining them
Being able to give an account of the trade-offs which must be made when 
designing a distributed system, and make such trade-offs in you own designs
Develop practical skills of implementation of distributed algorithms in 
software so that you will be able to take an algorithm description and realize 
it in software
Being able to give an account of the models used to design distributed 
systems and to manipulate those models to reason about such systems
Being able to design efficient algorithms for distributed computing tasks

13



Today’s Agenda

What will you do in this course?
• How will you be successful?

Understand what distributed systems are? What are the different 
architectures for distributed systems?

14



What is a Distributed System?

A distributed system
• Multiple computers (or nodes) communicate via a network
• Work together to achieve some task together/collectively
• Appears as a single coherent system to the users
• Failure of a node you didn’t even know existed can render your own node 

unusable

Examples
• Distributed Systems are ubiquitous

15Disclaimer: Slides prepared using multiple sources (UW-Madison – Remzi, Andrea, Mike; Martin Kleepman; Distributed Systems book by MVS/ AST) 



Why study Distributed Systems?

Inherently distributed
• Either necessarily or sufficiently

For better reliability
• If one node fails, the system continues to work

For better performance
• Get things done faster; for example, due to replication (from a nearby 

datacenter)

To solve bigger and complex problems
• Single node cannot handle all the data/processing capacity, etc.
• Efficiently solve a problem

16



Why ”Not” make a Distributed System?

Communication can fail (network link, network partition, etc.)
Nodes can crash
Faults can happen randomly or in a coordinated fashion
Security & Privacy concerns

17



Perspectives on Distributed Systems

Architecture: common organizations
Process: what kind of processes, and their relationships
Communication: facilities/protocols for exchanging data
Coordination: application-independent algorithms
Naming: how to identify resources?
Consistency & Replication: how to replicate for better performance; 
manage different replicas
Fault Tolerance: keep the show running in the presence of failures
Security: ensure authorization/authentication of users

18



Design Goals

Support sharing of resources
• Achieve high efficiency, cost effective

Distribution transparency
• Hide the fact that the processes and resources are physically distributed across multiple 

nodes 
Openness

• Components can easily be used or integrated into other systems
Dependability

• Degree that a computer system can be relied upon to operate as expected
Security

• Ensure confidentiality and integrity, provide trust
Scalability

• Scale well with more resources, users, 

19



Resource Sharing

Sharing resources crucial to achieve effectiveness, manage costs
Examples – Cloud-based shared storage and files, peer-to-peer 
multimedia sharing and streaming (BitTorrent), shared web hosting

20



Distribution Transparency

Different types
• Access
• Location
• Relocation
• Migration
• Replication
• Concurrency
• Failure

21



Dependability Requirements

Four main requirements
• Availability – Readiness for usage
• Reliability – Continuity of service delivery
• Safety – Very low probability of catastrophes
• Maintainability – How easy can a failed system be repaired

22



Scale in Distributed Systems

Think scalability from three perspectives
• Size scalability – Number of users/processes/nodes
• Geographical scalability – Maximum distance between nodes
• Administrative scalability – Number of administrative domains

23



Issues with scalability

Size scalability
• Limited by computational/storage/network capacity
• Scale-up vs Scale-out

Geographical scalability
• Hard to go from LAN to WAN
• High latency an issue; some apps/protocols may not work
• Unreliable WAN links 

Administrative scalability
• Conflicting policy concerning usage management, security, etc.
• Many systems do not suffer from issues – BitTorrent, Skype calls, Spotify

24



Techniques for scaling

Hide communication latency
• Use asynchronous communication; Delegate work (Edge servers)

Partitioning & Distribution
• Split data and spread across many nodes; Decentralization

Replication
• Replicate components/data/resources
• Caching – a special form of replication
• Increases availability, load balancing, better performance
• Drawbacks – consistency problems

 

25



Replication & Consistency

26



Architecture

27



Agenda

Four aspects
• Architectural Styles
• Centralized Architecture
• Decentralized Architecture
• Hybrid System Architecture

28



Architectural Style

A style is formulated in terms of
• (Replaceable) components with well-defined interfaces
• The way that components are connected to each other
• The data exchanged between components
• How these components and connectors are jointly configured into a system

Connector
• A mechanism that mediates communication, coordination, or cooperation 

among components

Different styles – Layered, Service-Oriented, Publish-Subscribe

29



Layered Style

Components organized in a layered style

30



Application Layering

Three-layered view
• Application-interface layer 

contains units for interfacing to 
users or external applications

• Processing layer contains the 
functions of an application, i.e., 
without specific data

• Data later contains the data 
that a client wants to 
manipulate through the 
application components

31



Service-Oriented Style

Multiple types – Object-based, Microservices, 
Resource-based
Object-based

• Objects represent components; connected to 
each other through procedure calls

• Objects may be placed on different nodes

Microservices
• Allow a large application to be separated into 

smaller independent parts
• Each part have its own realm of responsibility

32



Publish-Subscribe Style

Strong separation between processing and coordination
View system as a collection of autonomously operating 
processes
Two types – Event-based, Shared data-space

33



System Architecture

Organize system based on where the software components are placed
Three main types

• Centralized – Client-server
• Decentralized – Peer-to-peer
• Hybrid -- Cloud, Edge

34



Centralized Architecture

35

Basic Client-Server Model
Servers – Processes offering services
Clients – Processes using services
Clients and Servers can be on different 
machines
Clients follow request/reply model 
regarding using services



Multi-tiered Centralized Architectures

Spectrum of choices – Browser-based to phone-based to desktop apps

36



Three-tier Web Applications

Very common in most web-
based applications
Server itself uses a “client-
server” architecture
3 tiers – HTTP, J2EE and DB

37



Decentralized Architecture

Peer-to-peer systems
• Client and Server physically split up into logically equivalent parts
• Each part operates on its own share of the complete data set

Better for load-balancing
Two types depending on the topology

38



Structured Peer-to-Peer Systems

Adheres to specific deterministic 
topology – ring, tree, grid, etc.
Semantic-free index – each data 
item associated with a key; key 
used as an index
Example: Chord – Uses distributed 
Hash Table to locate data/objects; 
Data item with key k à smallest 
node with id >= k

39



Unstructured Peer-to-Peer Systems

Adheres to randomly picking the neighbors à Random graph
Use flooding or random walks to search for specific data
Example: BitTorrent for file sharing

40



Hybrid Architectures 

Mix of both centralized and decentralized architecture
Examples: Cloud Computing, Edge Computing, Blockchain/Distributed 
Ledgers 

41



Cloud Computing

Layered approach
• Hardware – Processors, Routers, etc.
• Infrastructure – Virtualization 

techniques dealing with CPU, storage
• Platform – Provide higher-level 

abstractions for storage
• Application – Actual applications such 

as Google Docs, Office 365, YouTube, 
etc.

Pay-per-use model
Guaranteed Service-level Agreements 
(SLAs) 

42



Edge Computing

Systems deployed on the Internet where 
servers are placed at the edge of the 
network: the boundary enterprise 
networks and the actual Internet
Why Edge

• Performance
• Reliability
• Security & Privacy

Edge Orchestration – Trickier than in the 
Cloud

• Resource allocation guarantees; Service 
Placement; Edge Selection

43


