Automated Reasoning Exercise Sheet 1: Propositional Logic

Exercise 1

Represent the following sentences in propositional logic, using the connectives \neg , \longrightarrow , \wedge and \vee (make clear what your propositional variables stand for):

- 1. Cats chase mice or birds, but not at the same time.
- 2. If it rains the beach will be empty.
- 3. If Jane bought a piano today, she either sold her old one or took out a bank loan.

Also draw the truth tables for each statement.

Exercise 2

The truth table for the following NAND expression, $p \mid q$ is:

p	q	$p \mid q$
t	t	f
t	$\int f$	t
$\int f$	t	t
f	f	t

Show that | alone can be used to define the connectives: \neg , \land , \lor and \longrightarrow .

Exercise 3

Using natural deduction, give a (tree representation) proof the theorem:

$$(R \to P) \to (((\neg R \lor P) \to (Q \to S)) \to (Q \to S))$$

Exercise 4

Prove the following propositional statements in Isabelle:

1.
$$(P \longrightarrow (Q \longrightarrow R)) \longrightarrow ((P \longrightarrow Q) \longrightarrow (P \longrightarrow R))$$

2. $\neg \neg P \longrightarrow P$

 $\begin{array}{l} 3. \ (P \longrightarrow Q \land R) \longrightarrow ((P \longrightarrow Q) \land (P \longrightarrow R)) \\ \\ 4. \ (\neg P \longrightarrow Q) \longrightarrow (\neg Q \longrightarrow P) \\ \\ 5. \ P \lor \neg P \end{array}$

Exercise 5

Give tree representation proofs for the statements in the previous exercise annotating your steps using the Isabelle names of rules (e.g. conjI, impI, etc).