Automated Reasoning:

Solutions to Exercise Sheet 1: Propositional Logic

Exercise 1

1. Cats chase mice or birds, but not at the same time.

This can be represented as: $(M \vee B) \wedge \neg (M \wedge B)$

M: Cats chase mice B: Cats chase birds

	M	В	$M \vee B$	$\neg (M \land B)$	$(M \vee B) \wedge \neg (M \wedge B)$
	t	t	t	f	f
	t	f	t	t	t
	f	t	t	t	t
İ	f	f	$\mid f \mid$	t	f

2. If it rains the beach will be empty.

This can be represented as: $R \longrightarrow E$

R: It rains E: Beach is empty

R	$\mid E \mid$	$R \longrightarrow E$
t	t	t
t	f	$\mid f \mid$
f	$\mid t \mid$	$\mid t \mid$
f	$\mid f \mid$	$\mid t \mid$

3. If Jane bought a piano today, she either sold her old one or took out a bank loan.

This can be represented as: $P \longrightarrow S \vee B$

where

P: Jane bought a piano today $S{:}$ Jane sold her old piano B: Jane took out a bank loan

P	S	L	$P \longrightarrow S \vee B$
t	t	t	t
$\mid t \mid$	$\mid t \mid$	f	t
$\mid t \mid$	f	t	t
$\mid t \mid$	f	f	f
$\int f$	$\mid t \mid$	t	t
$\int f$	$\mid t \mid$	f	t
$\int f$	f	t	t
$\int f$	$\int f$	f	t

Exercise 2

Connective	Expression using
_	$p \mid p$
\wedge	$\left \; \left(\; p \mid q \; \right) \; \right \; \left(p \mid q \right)$
V	$(p \mid p) \mid (q \mid q)$
\longrightarrow	$p \mid (p \mid q)$

Some notes:

- $p \wedge q$ is the same as $\neg (p \mid q)$
- $p \lor q$ is the same as $\neg(\neg p \land \neg q)$
- $p \longrightarrow q$ is the same as $\neg p \lor q$

Exercise 3

One possible ND proof:

$$\frac{R \vee \neg R \ excluded_middle}{\frac{R \vee \neg R \ excluded_middle}{\frac{P}{\neg R \vee P} \ disj} \frac{mp}{disj} \frac{[\neg R]_4}{\neg R \vee P} \frac{disj}{disj} \frac{I1}{(\neg R \vee P) \rightarrow (Q \rightarrow S)]_2} \frac{\neg R \vee P}{mp}$$

$$\frac{Q \rightarrow S}{Q \rightarrow S} \frac{mp}{mp}$$

$$\frac{\frac{S}{Q \rightarrow S} \ impI_3}{((\neg R \vee P) \rightarrow (Q \rightarrow S)) \rightarrow (Q \rightarrow S))} \frac{impI_2}{(R \rightarrow P) \rightarrow (((\neg R \vee P) \rightarrow (Q \rightarrow S)) \rightarrow (Q \rightarrow S)))} \frac{impI_1}{(Q \rightarrow S)}$$

Alternatively, since the above proof does an application of impI that can be omitted to give a more succinct derivation:

$$\frac{R \vee \neg R \ excluded_middle}{\frac{[R]_3 \quad [R \rightarrow P]_1}{\neg R \vee P} \frac{mp}{disjI2} \frac{[\neg R]_3}{\neg R \vee P} \frac{disjI1}{disjE_3} \frac{}{[(\neg R \vee P) \rightarrow (Q \rightarrow S)]_2}{\frac{Q \rightarrow S}{((\neg R \vee P) \rightarrow (Q \rightarrow S)) \rightarrow (Q \rightarrow S))} \frac{mp}{(R \rightarrow P) \rightarrow (((\neg R \vee P) \rightarrow (Q \rightarrow S)) \rightarrow (Q \rightarrow S))} impI_1}$$

Note: The Isabelle theory file associated with this tutorial gives yet another proof that does not use the excluded middle axiom and Cut rule. It uses Isabelle's **ccontr** rule, which (as indicated in the lectures) is an alternative to excluded middle when it comes to making the logic classical.