

Introduction to Quantum Computing

Lecture 1: Introduction and Logistics

Petros Wallden, Raul Garcia-Patron Sanchez, Chris Heunen and Joschka Roffe

Contacts

• Petros Wallden (Lecturer CO)

Email: <u>petros.wallden@ed.ac.uk</u>

• Raul Garcia-Patron Sanchez (Lecturer) Email: <u>rgarcia3@ed.ac.uk</u>

• Chris Heunen (Lecturer)

Email: <u>chris.heunen@ed.ac.uk</u>

Joschka Roffe (Lecturer)

Email: joschka.roffe@ed.ac.uk

Jakub Adamski (TA) Email: jakub.adamski@ed.ac.uk

• Discussions and Questions on Piazza Forum

Structure of the course

Lectures

- Weeks 1 to 10
- Tuesday 10:00 10:50 @ Teviot Lecture Theatre, Doorway 5, Medical School, Teviot
- Wednesday 11:10 12:00 @ LG.11, 40 George Square
- Thursday 11:10 12:00 @ LG.11 40, George Square
- Tutorial (start week 2)
 - Tutorial 0 on week 2
 - 8 tutorials in total: weeks 3 to 10
 - AT 2.07, 4 groups
 - Thursday 13:10 14:00; Thursday 14:10 15:00
 - Friday 14:10 15:00; Friday 15:10 16:00
- Q&A after any lecture

Assessment

Coursework 25%

- One assignment released week 6 23rd October
- Due Friday 8th November 12:00 (week 8)

- Exam 75%
 - December
 - Revision session on week 10.

- Course has changed since last year! (20 credits from 10)
 - Not all material is covered in past papers
 - Coursework would be different (more based on programming)

Syllabus

- Intro to quantum mechanics and quantum circuits (6 lectures, Raul)
- Quantum algorithms: basic and FT (8 lectures, Raul)
- Quantum Programming: Pennylane (5 Lectures, Chris)
- Near-term quantum algorithms & quantum ML (3 lectures, Petros)
- Measurement-based quantum computation (3 lectures, Petros)
- Quantum error correction (3 lectures, Joschka)

- Quantum Computation and Quantum Information" by Michael A. Nielsen & Isaac L. Chuang
- Quantum Computing Lecture Notes by Ronald de Wolf <u>https://arxiv.org/abs/1907.09415</u>
- Introduction to Quantum Computation Sevag Gharibian Lectures notes link
- Lecture Notes: <u>https://opencourse.inf.ed.ac.uk/iqc/schedule</u> Extra material/details given at the schedule Recordings from the Learn page of the course

Quantum Computation and Quantum Information Michael A. Nielsen and Isaac L. CHUANG **Quantum Informatics**

Store, process and communicate information exploiting the laws of quantum mechanics

Computation

Cyber Security

Quantum Cyber Security INFR11187 during S2 Petros Wallden (CO) and Mina Doosti

Quantum Computing Ecosystem

The future of quantum computing is on the making right now!

The prospects of quantum computation

Hardware architectures

• Superconducting circuits

• Ion Traps

Models of Quantum Computation

Quantum Circuits

Measurement-based Quantum Computation

Adiabatic Quantum Computation Quantum annealers

The ideal life of a qubit in a nutshell

Myth 1

Quantum Computers are much faster in performing operations than Classical Computers

Myth 1

Quantum Computers are much faster in performing operations than Classical Computers

Reality

Quantum computers are **not** faster. Speed-up is obtained because quantum theory allows algorithms/operations impossible for classical computers.

Myth 2

Quantum Computers simultaneously perform all branches of a (probabilistic) computation and can use all that information

Myth 2

Quantum Computers simultaneously perform all branches of a (probabilistic) computation and can use all that information

Reality

QC span the space of possibilities in a peculiar way (behave as complex probabilities). However, at the end of the computation the result is obtained by a **single read-out/measurement** and "unrealised" paths do not contribute.

Myth 3

Quantum Computers give equally impressive computational speed-up to all problems

Myth 3

Quantum Computers give equally impressive computational speed-up to all problems

Reality

Quantum computers can give from exponential speed-up (factoring) to much smaller quadratic speed-up (search). The exact optimal quantum algorithm depends on the problem and is crucial for quantum cryptanalysis.

How it works?

- Quantum computers behave as probabilistic computers but with complex-valued "probabilities"
- Probability is the mod square of the sum of the complex amplitudes

How it works?

- For speed-up: need an algorithm that many terms cancel each other
- Non-trivial: need suitable algorithm design for each task
- $|\sum_{i} a_{i}|^{2} = \sum_{i} |a_{i}|^{2} + \sum_{i \neq j} a_{i}^{*} a_{j}$

First term: classical probabilities

Second term: Amplify or cancel probability (interference)

• Classical systems: random amplitudes \rightarrow interference \approx zero