
Introduction Course Administration Course Outline

Elements of Programming Languages
Lecture 0: Introduction and Course Outline

James Cheney

University of Edinburgh

September 16, 2024

Introduction Course Administration Course Outline

What is programming?

Computers are deterministic machines, controlled by
low-level (usually binary) machine code instructions.

A computer can [only] do whatever we know how to
order it to perform (Ada Lovelace, 1842)

Programming is communication:

between a person and a machine, to tell the machine
what to do
between people, to communicate ideas about algorithms
and computation

Introduction Course Administration Course Outline

From machine code to programming languages

The first programmers wrote all of their code directly in
machine instructions

ultimately, these are just raw sequences of bits.

Such programs are extremely difficult to write, debug or
understand.

Simple “assembly languages” were introduced very early
(1950’s) as a human-readable notation for machine code

FORTRAN (1957) — one of the first “high-level”
languages (procedures, loops, etc.)

Introduction Course Administration Course Outline

What is a programming language?

For the purpose of this course, a programming language
is a formal, executable language for computations

Non-examples:

English (not formal)
First-order Logic (formal, but not executable in general)
HTML4 (formal, executable but not computational)
ChatGPT, Copilot etc. (executable, computational, not
formal, but can be asked to write programs based on
natural language specs!)

(HTML is in a gray area — with JavaScript or HTML5
extensions it is a lot more “computational”)

Introduction Course Administration Course Outline

What is a programming language?

For the purpose of this course, a programming language
is a formal, executable language for computations

Non-examples:

English (not formal)

First-order Logic (formal, but not executable in general)
HTML4 (formal, executable but not computational)
ChatGPT, Copilot etc. (executable, computational, not
formal, but can be asked to write programs based on
natural language specs!)

(HTML is in a gray area — with JavaScript or HTML5
extensions it is a lot more “computational”)

Introduction Course Administration Course Outline

What is a programming language?

For the purpose of this course, a programming language
is a formal, executable language for computations

Non-examples:

English (not formal)
First-order Logic (formal, but not executable in general)

HTML4 (formal, executable but not computational)
ChatGPT, Copilot etc. (executable, computational, not
formal, but can be asked to write programs based on
natural language specs!)

(HTML is in a gray area — with JavaScript or HTML5
extensions it is a lot more “computational”)

Introduction Course Administration Course Outline

What is a programming language?

For the purpose of this course, a programming language
is a formal, executable language for computations

Non-examples:

English (not formal)
First-order Logic (formal, but not executable in general)
HTML4 (formal, executable but not computational)

ChatGPT, Copilot etc. (executable, computational, not
formal, but can be asked to write programs based on
natural language specs!)

(HTML is in a gray area — with JavaScript or HTML5
extensions it is a lot more “computational”)

Introduction Course Administration Course Outline

What is a programming language?

For the purpose of this course, a programming language
is a formal, executable language for computations

Non-examples:

English (not formal)
First-order Logic (formal, but not executable in general)
HTML4 (formal, executable but not computational)
ChatGPT, Copilot etc. (executable, computational, not
formal, but can be asked to write programs based on
natural language specs!)

(HTML is in a gray area — with JavaScript or HTML5
extensions it is a lot more “computational”)

Introduction Course Administration Course Outline

What is a programming language?

For the purpose of this course, a programming language
is a formal, executable language for computations

Non-examples:

English (not formal)
First-order Logic (formal, but not executable in general)
HTML4 (formal, executable but not computational)
ChatGPT, Copilot etc. (executable, computational, not
formal, but can be asked to write programs based on
natural language specs!)

(HTML is in a gray area — with JavaScript or HTML5
extensions it is a lot more “computational”)

Introduction Course Administration Course Outline

Some different languages

Python, Java, SQL

print("Hello, world!")

// Java

public class HelloWorld {

public static void main(String[] args) {

System.out.println("Hello, World");

}

}

-- SQL

SELECT DISTINCT ’Hello world!’ AS new_value

FROM AnyTableWithOneOrMoreRows

WHERE 1 = 1;

Introduction Course Administration Course Outline

Why are there so many?

Many different goals/motivations

Scientific computation: FORTRAN, R

Commercial needs/industry backing: COBOL, C, C++,
Java, C#, F#, Ruby, JavaScript, Rust, SQL,
WebAssembly

Scripting: Perl, Python, Ruby

Explore research ideas: LISP, Simula, Smalltalk, Algol,
Pascal, Scheme, Racket, ML, OCaml, Haskell, Prolog,
Curry

These migrate over time, for example Python now widely used
for scientific computation

Introduction Course Administration Course Outline

What do they have in common?

All (formal) languages have a written form: we call this
(concrete) syntax

All (executable) languages can be implemented on
computers: e.g. by a compiler or interpreter

All programming languages describe computations: they
have some computational meaning, or semantics

In addition, most languages provide abstractions for
organizing, decomposing and combining parts of
programs to solve larger problems.

Introduction Course Administration Course Outline

What are the differences?

There are many so-called “programming language paradigms”:

imperative (variables, assignment, if/while/for,
procedures)

object-oriented (classes, inheritance, interfaces,
subtyping)

typed (statically, dynamically, strongly, un/uni-typed)

functional (λ-calculus, pure, lazy)

logic/declarative (computation as deduction, query
languages)

each representing a (more or less coherent) philosophy of what
computation is

Introduction Course Administration Course Outline

Languages, paradigms and elements

A great deal of effort has been expended trying to find
the “best” paradigm, with no winner declared so far.

In reality, they all have strengths and weaknesses, and
almost all languages make compromises or synthesize
ideas from several “paradigms”.

This course emphasizes different programming language
features, or elements

Analogy: periodic table of the elements in chemistry

Goal: understand the basic components that appear in a
variety of languages, and how they “combine” or “react”
with one another.

Introduction Course Administration Course Outline

Applicability

Major new general-purpose languages come along every
decade or so. (C/C++, Java, Python?, Rust?)

Hence, few programmers or computer scientists will
design a new, widely-used general purpose language, or
write a compiler
However, domain-specific languages are increasingly
used, and the same principles of design apply to them

Moreover, understanding the principles of language design
can help you become a better programmer

Learn new languages / recognize new features faster
Understand when and when not to use a given feature

Assignments will cover practical aspects of programming
languages: interpreters and DSLs/translators

Introduction Course Administration Course Outline

Course Administration

Introduction Course Administration Course Outline

Staff

Lecturer: James Cheney <jcheney@inf.ed.ac.uk>, IF
5.29

Office hours: by appointment

TA: Wenhao Tang

Introduction Course Administration Course Outline

Format

20 lectures (M/Th 1410–1500)

2 intro/review [non-examinable]
2 guest lectures [non-examinable]
16 core material [examinable]

1 two-hour lab session (September 25, 1210–1400)

8 one-hour tutorial sessions, starting in week 3 (times
and groups TBA)

All of these activities are part of the course and may cover
examinable material, unless explicitly indicated.

Introduction Course Administration Course Outline

Feedback and Assessment

Coursework:

Assignment 1: Lab exercise sheet, available during
week 2, due during week 3, worth 0% of final grade
Assignment 2: available during week 3, due week 6,
worth 0% of final grade.
Assignment 3: available during week 6, due week 10,
worth 20% of final grade.
The first two assignments are marked for formative
feedback only, but the third builds on the first two.

One (written) exam: worth 80% of final grade.

Introduction Course Administration Course Outline

Scala

The main language for this course will be Scala

Scala offers an interesting combination of ideas from
functional and object-oriented programming styles
We will use Scala (and other languages) to illustrate key
ideas
We will also use Scala for the assignments

However, this is not a “course on Scala”

You will be expected to figure out certain things for
yourselves (or ask for help)
We will not teach every feature of Scala, nor are you
expected to learn every dark corner
In fact, part of the purpose of the course is to help you
recognize such dark corners and avoid them unless you
have a good reason...

Introduction Course Administration Course Outline

Recommended reading

There is no official textbook for the course that we will
follow exactly

However, the following are recommended readings to
complement the course material:

Practical Foundations for Programming Languages,
second edition, (PFPL2), by Robert Harper. Available
online from the author’s webpage and through the
University Library’s ebook access.
Concepts in Programming Languages (CPL), by John
Mitchell. Available through the University Library’s
ebook access.

Slides available on web page, lecture notes available in
Piazza

Introduction Course Administration Course Outline

Course Outline

Introduction Course Administration Course Outline

Wadler’s Law

In any language design, the total time spent discussing a
feature in this list is proportional to two raised to the power of
its position.

0. Semantics

1. Syntax

2. Lexical syntax

3. Lexical syntax of comments

See also: bikeshedding (n). Technical disputes over minor,
marginal issues conducted while more serious ones are being
overlooked.
Few languages are well-designed because few people know
what (good or bad) language design is. Let’s change that.

Introduction Course Administration Course Outline

Syntax

This course is primarily about language design and
semantics.

As a foundation for this, we will necessarily spend some
time on abstract syntax trees (and programming with
them in Scala)

We will cover: Name-binding, substitution, static vs.
dynamic scope

We will not cover: Concrete syntax, lexing, parsing,
precedence (Compiling Techniques does some of this)

Introduction Course Administration Course Outline

Interpreters, Compilers and Virtual Machines

Suppose we have a source programming language LS , a
target language LT , and an implementation language LI

An interpreter for LS is an LI program that executes LS
programs.
When both LS and LI are low-level (e.g. LS = JVM, LI
= x86), an interpreter for L is called a virtual machine.
A translator from LS to LT is an LI program that
translates programs in LS to “equivalent” programs in
LT .
When LT is low-level, a translator to LT is usually called
a compiler.

In this course, we will use interpreters to explore different
language features.

Introduction Course Administration Course Outline

Semantics

How can we understand the meaning of a
language/feature, or compare different
languages/features?

Three basic approaches:

Operational semantics defines the meaning of a program
in terms of “rules” that explain the step-by-step
execution of the program
Denotational semantics defines the meaning of a
program by interpreting it in a mathematical structure
Axiomatic semantics defines the meaning of a program
via logical specifications and laws

All three have strengths and weaknesses

We will focus on operational semantics in this course: it
is the most accessible and flexible approach.

Introduction Course Administration Course Outline

Abstraction, abstraction, abstraction

The three most important considerations for
programming language design are:

(Data) Abstraction
(Control) Abstraction
(Modular) Abstraction

We will investigate different language elements that
address the need for these abstractions, and how different
design choices interact.

In particular, we will see how types offer a fundamental
organizing principle for programming language features.

Introduction Course Administration Course Outline

Data Structures and Abstractions

Data structures provide ways of organizing data:

option types vs. null values
pairs/record types;
variant/union types;
lists/recursive types;
pointers/references

Data abstractions make it possible to hide data
structure choices:

overloading (ad hoc polymorphism)
generics (parametric polymorphism)
subtyping
abstract data types

Introduction Course Administration Course Outline

Control Structures and Abstractions

Control structures allow us to express flow of control:

goto
for/while loops
case/switch
exceptions

Control abstractions make it possible to hide
implementation details:

procedure call/return
function types/higher-order functions
continuations

Introduction Course Administration Course Outline

Design dimensions and modularity

Programming “in the large” requires considering several
cross-cutting design dimensions:

eager vs. lazy evaluation
purity vs. side-effects
static vs. dynamic typing

and modularity features

modules, namespaces
objects, classes, inheritance
interfaces, information hiding

Introduction Course Administration Course Outline

The art and science of language design

Language design is both an art and a science

The most popular languages are often not the ones with
the cleanest foundations (and vice versa)

This course teaches the science: formalisms and
semantics

Aesthetics and “good design” are hard to teach (and hard
to assess), but one of the assignments will give you an
opportunity to experiment with domain-specific language
design

Introduction Course Administration Course Outline

Course goals

By the end of this course, you should be able to:

1 Investigate the design and behaviour of programming
languages by studying implementations in an interpreter

2 Employ abstract syntax and inference rules to understand
and compare programming language features

3 Design and implement a domain-specific language
capturing a problem domain

4 Understand the design space of programming languages,
including common elements of current languages and how
they are combined to construct language designs

5 Critically evaluate the programming languages in current
use, acquire and use language features quickly, recognise
problematic programming language features, and avoid
their (mis)use.

Introduction Course Administration Course Outline

Relationship to other UG3 courses

Compiling Techniques (S2)

covers complementary aspects of PL implementation,
such as lexical analysis and parsin, compilation of
imperative programs to machine code

Introduction to Theoretical Computer Science (S1)

covers formal models of computation (Turing machines,
etc.) as well as some λ-calculus and type theory

Modelling Concurrent Systems (S1)

covers formal models of concurrency including
operational techniques

In this course, we focus on interpreters, operational
semantics, and types to understand programming
language features.

There is relatively little overlap with CT, MCS, or ITCS.

Introduction Course Administration Course Outline

Summary

Today we covered:

Background and motivation for the course
Course administration
Outline of course topics

Next time:

Concrete and abstract syntax
Programming with abstract syntax trees (ASTs)

	Introduction
	Course Administration
	Course Outline

