Thinking About Data

  1. Overview? : PDF Video
  2. What is Machine Learning? : PDF Video
  3. What is Classification? : PDF Video
  4. What is Regression? : PDF Video
  5. What is Clustering? : PDF Video
  6. Attribute-value representation : PDF Video
  7. Categorical (nominal) Attributes  : PDF Video
  8. Ordinal Attributes : PDF Video
  9. Numerical Attributes and Outliers : PDF Video
  10. Skewed and Non-Monotonic Attributes : PDF Video
  11. Credit Scoring Example : PDF Video
  12. How to Represent Images : PDF Video
  13. Representing Handwritten Digits : PDF Video
  14. Why Blurring Helps Machine Learning Video
  15. When do Pixels Work as Attributes : PDF Video
  16. Attributes for Object Recognition : PDF Video
  17. Representing Text: Categorical Attributes : PDF Video
  18. Representing Text: Numerical Attributes : PDF Video
  19. Representing Music: Fourier Coefficients : PDF Video
  20. Supervised vs. Unsupervised Learning : PDF Video
  21. Binary vs Multiclass Classifiers  PDF Video
  22. Accuracy and Imbalanced Classes : PDF Video
  23. Generative vs. Discriminative Learning : PDF Video
  24. How to Represent Structured Objects : PDF Video
  25. Detect Outliers by Visualising the Data : PDF Video

All Slides: PDF

Video Playlist Link

Embedded Video Playlist

License
All rights reserved The University of Edinburgh