Skip to main content
Home

Breadcrumbs

You are here:

  1. MCI: Methods for Causal Inferenc...

MCI: Lecture Slides

Lecture 1: Introduction

Lecture 2: Basics of probability

Lecture 3: Regression and Graphs

Lecture 4: Potential Outcomes

Lecture 5: Potential outcomes, propensity score

Lecture 6: Instrumental variables

Lecture 7: Sensitivity Analysis

Lecture 8: Difference in difference

Lecture 9: Pearl's do operator

Lecture 10: The adjustment formula (Pearl)

Lecture 11: Front door

Lecture 12: PC algorithm

Lecture 13: Do_calculus_optimal_conditioning

Lecture 14: Mediation part 1

Lecture 15: Counterfactual

Lecture_16_17: Counterfactuals, attribution, mediation

Lecture 18: ANMs

Revision summary slides

Files

lec1intro.pdf
lec2basicsofprobability.pdf
lec3regressiongraphsconventions1.pdf
lec4-rubinpotentialoutcomes.pdf
lec5-rubinpropensityipw0.pdf
lec6iv.pdf
lec7sensitivity.pdf
lec9-pearldo0.pdf
lec10pearladjustmentformula.pdf
lec11-fontdoor.pdf
lec12-pcalgorithm0.pdf
lec13-docalculusoptimalconditioning.pdf
lec14mediation.pdf
lec15counterfactual.pdf
lec1617counterfactualmediation.pdf
lec18anm.pdf
lec19revision.pdf
License
All rights reserved The University of Edinburgh

Book traversal links for MCI: Lecture Slides

  • MCI: Methods for Causal Inference
  • Up

Search

Log in only

  • Log in to edit

MCI - top navigation

  • Learn
  • Piazza
  • DRPS

Navigation

  • MCI: Lecture Slides

Opencourse privacy & accessibility statements; contact Informatics, ILTS.